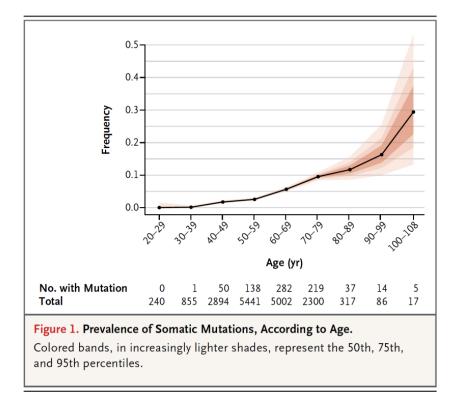


EHA-SWG Scientific Meeting on Recent Advances in the Pathogenesis and Treatment of Secondary Acute Myeloid Leukemias

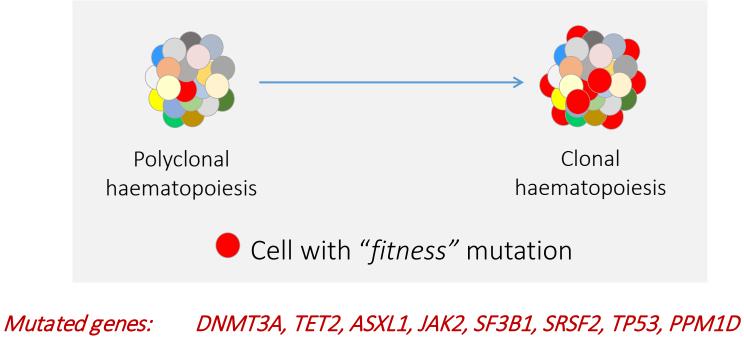
CHIP and clinical management

25.04.2025 Kirsten Grønbæk


Today's talk

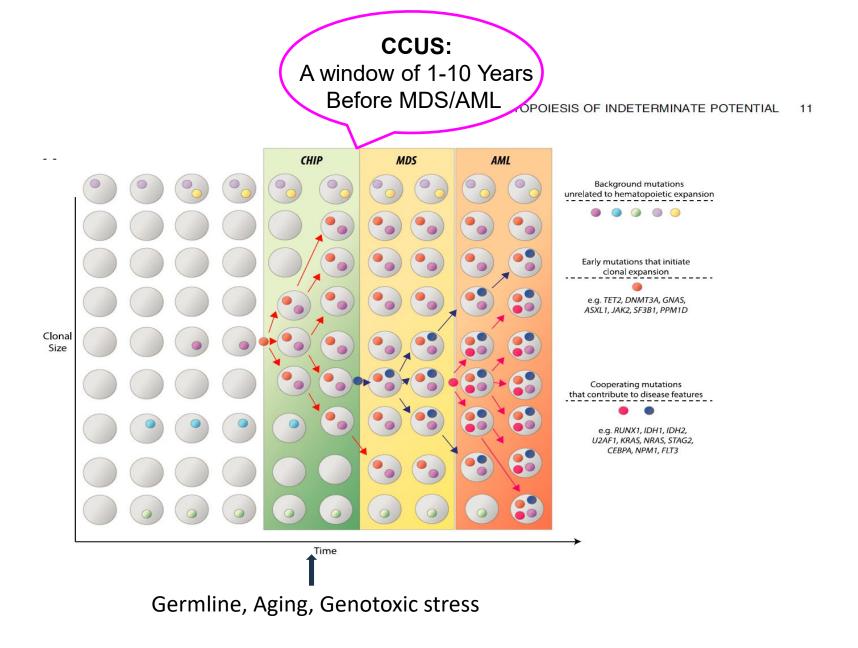
- CHIP and CCUS in the general population, the risk of myeloid neoplasms and death.
- Therapy related CHIP (t-CHIP) and therapy related CCUS (t-CCUS), the risk of therapy related myeloid neoplasms (t-MN) and other complications
- Could CHIP and CCUS clinical interception trials improve outcome?

CHIP and CCUS in the general population



Clonal hematopoiesis

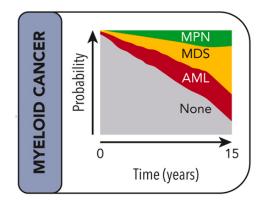
- Increased risk of hematological cancer
- Increased risk of cardiovascular disease
- Higher mortality


Clonal Hematopoiesis (CH)

Prevalence:

15-20% of people aged >60 years

Jaiswal et al, NEJM 2014; Genovese et al, NEJM 2014; Xie et al, Nat Med 2014, McKerrell et al, Cell Reports 2015.



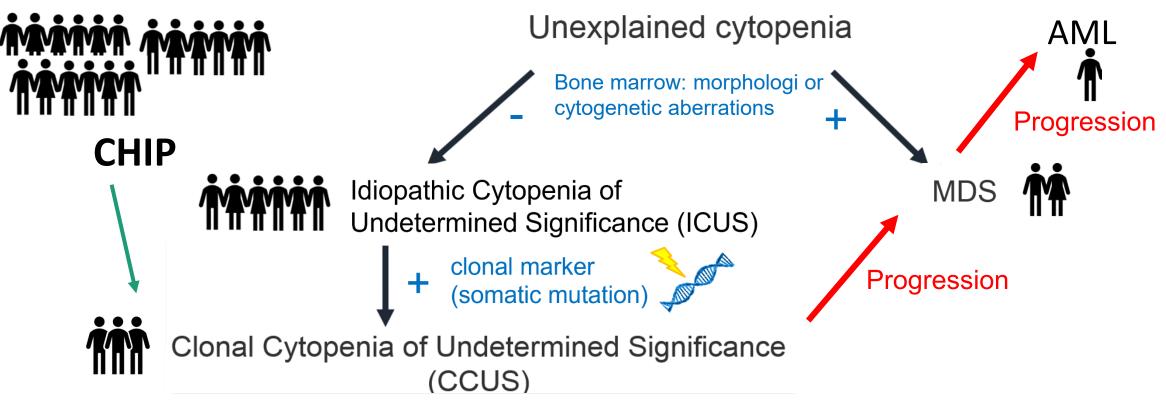
CHIP: Clonal Hematopoiesis of Indeterminate Potential CCUS: Clonal Cytopenia of Unknown Significance

What have we learned from epidemiological studies?

- The risk of progression of CHIP to a hematological malignancy is 0,5-1%/year
- The role of CH in cardiovascular and other diseases is still debated
- High-risk CHIP of MN progression We can use:
 - CHRS (clonal hematopoiesis risk score) (Weeks et al., NEJM evidence 2023;2(5)
 - Multiparameter prediction of myeloid neoplasia risk (Gu et al., Nature Genetics 2023; 55 (1523-1530))
 - CCRS (Risk prediction for clonal cytopenia)

(Xie z et al Blood 2024;144(19):2033-2044)

What about unselected patients referred with unexplained cytopenia?



Hansen JW, Træden D et al., submitted

Myeloid cancer and precursor conditions

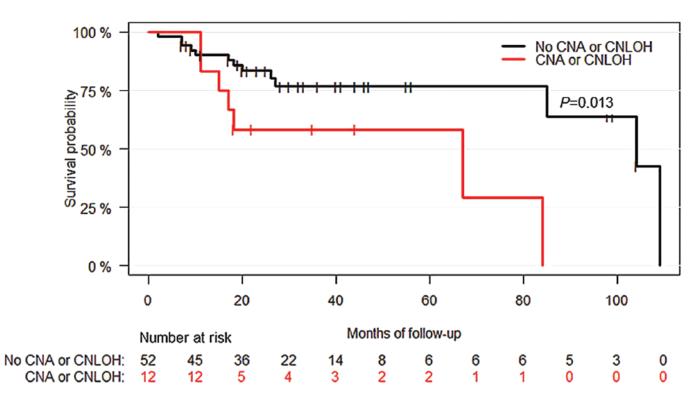
Open questions

- Are deaths not related to myeloid cancer progression also related to the mutated clones?
- Can we prevent or postpone progression/death?
- Can we prevent or postpone comorbidities/causes of death not related to myeloid cancer progression?
- Is this best done by targeting the factor that stimulates the clone, the clone itself, or the downstream effectors of clonal mutations?

What about structural aberrations?

The role of mosaic chromosomal aberrations?

- CHIP (clonal hematopoiesis of indeterminate potential)
- Next-generation sequencing
 - WGS/WES/targeteret panel
- SNV/indels, punktmutationer
 - Missense
 - Frameshift
 - Nonsense
 - Splice site


- mCA (mosaic chromosomal alterations)
- SNP array/WGS
- Strukturelle varianter/copy number variations (SV/CNV)
 - losses
 - gains
 - Copy-neutral loss of heterozygosity/uniparentel disomi (CNLOH/UPD)
 - (Translocations)

CCUS with combined point mutations and structural aberrations

Mutations + CNA or CN-LOH are associated with overall survival

Overall Survival, CCUS Patients

CNA: Copy number aberrations CN-LOH: Copy neutral loss of heterozygosity

Mikkelsen SU et al., Haematologica 2021 Jun 1;106(6):1762-1766

Who to follow and how?

- Patients referred with long lasting cytopenia should have a full diagnostic work up
- We need to identify high-risk CHIP/CCUS high risk of progression vs high risk of death
- CHRS, MN Predict and CCRS can identify cases that progress, but is not efficient for predicting survival in an elderly population (our study and *)
- Structural aberrations/mCA and germline genetics not included in prediction models could they be helpful?
- CCUS with anemia + one cytopenia should be followed like LR-MDS
- Very few CCUS patients progress to high-risk disease within 5 years
- SYMPTOMS may be the most important follow-up parameter, particularly in the elderly population
- Beware of co-morbidities the main causes of death, particularly in the elderly population

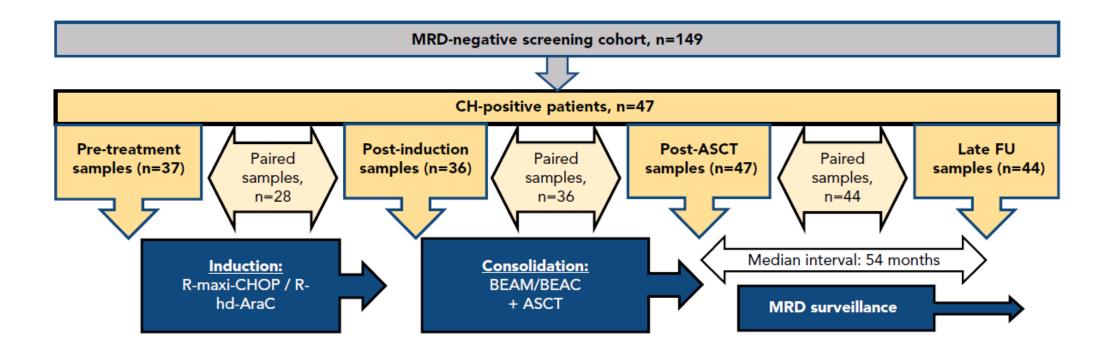
*Huber et al., Leukemia (2024) 38:1634 – 1637

Therapy related CHIP and CCUS (t-CHIP and t-CCUS)

LETTER TO BLOOD | MAY 28, 2020

Clonal hematopoiesis evolves from pretreatment clones and stabilizes after end of chemotherapy in patients with MCL

Christian Winther Eskelund , Simon Husby , Francesco Favero , Tobias Wirenfeldt Klausen , Francisco German Rodriguez-Gonzalez , Arne Kolstad , Lone Bredo Pedersen , Riikka Katariina Räty , Christian H. Geisler , Mats Jerkeman , Joachim Weischenfeldt , Kirsten Grønbæk

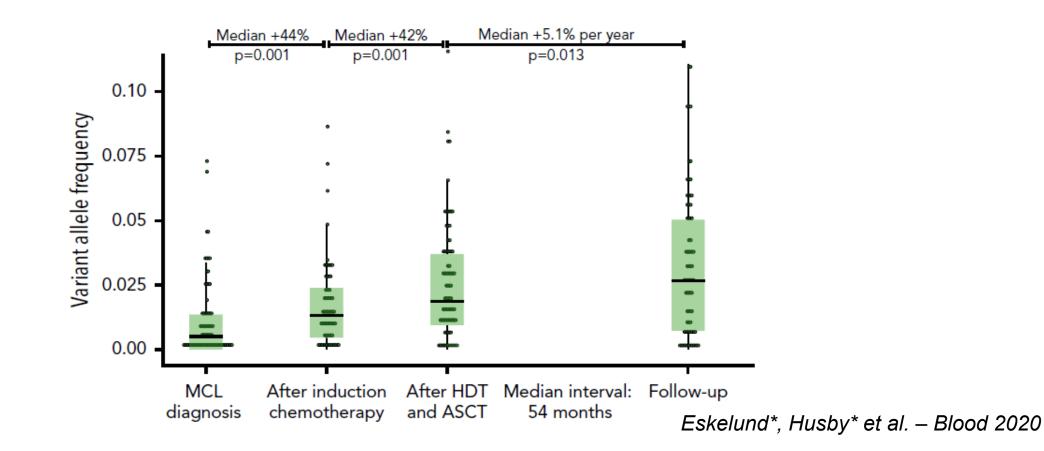

Blood (2020) 135 (22): 2000-2004.

Main Research Question:

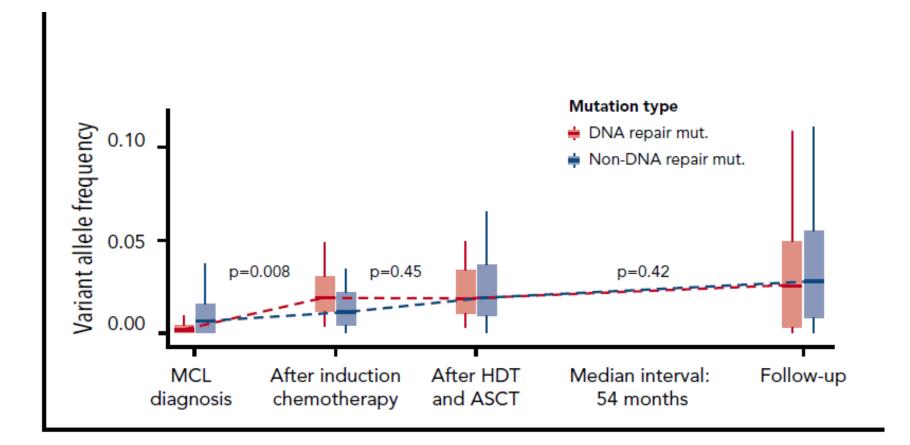
Is CHIP in lymphoma caused by the chemotherapy and how do clones evolve during treatment?

Eskelund*, Husby* et al. – Blood 2020

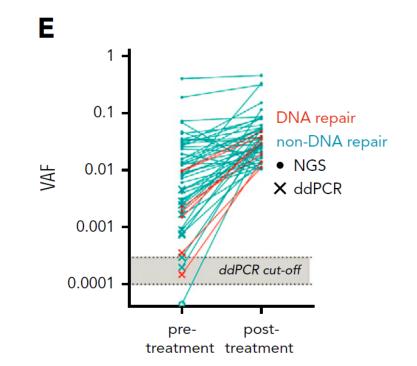
t-CHIP in pts from the Nordic Mantle Cell Lymphoma (MCL) 2+3 trials


Approach:

335 samples from 149 cases


In 47 **CH positive** and **MRD negative** cases consecutive samples were investigated by NGS and ddPCR to follow the clonal evolution.

MCL pts,1st line tx; Nordic Regimen


CHIP mutations grow under treatment chemotherapy

Evolution of clones with DNA repair mutations vs other CH mutations

All but one mutation were detectable before any treatment was initiated

Eskelund*, Husby* et al. – Blood 2020 21

Clonal evolution of CHIP under the pressure of immuno-chemotherapy:

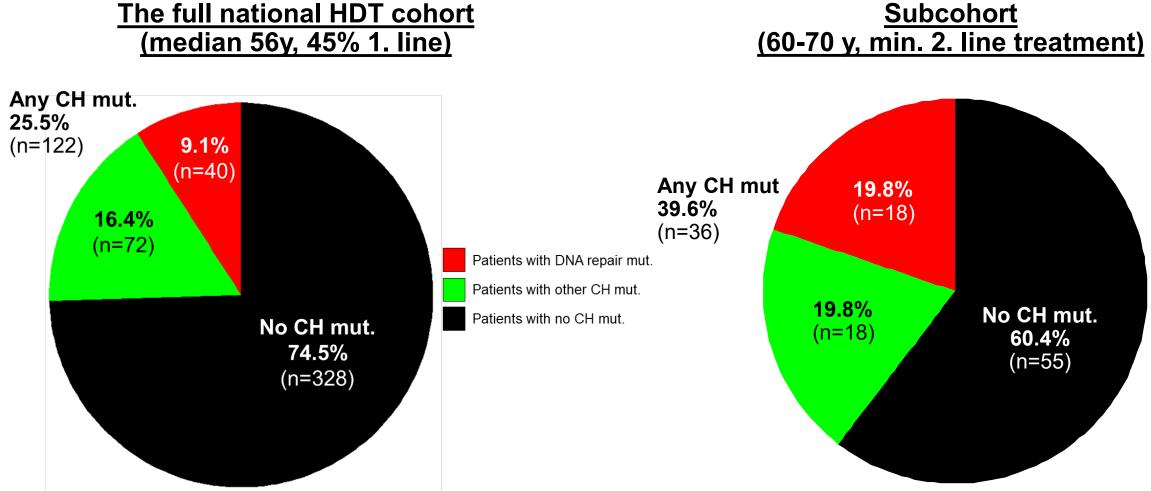
- CHIP clones are present at low levels even before chemotherapy (CT) is given**
- The clones expand during the pressure of CT, and stabilizes when CT is removed
- Specifically clones with mutations in DNA repair genes expand during induction chemotherapy**
- In MCL with ASCT as part of induction regimen tMN are rare, even in expanding clones after long term follow up (none at median 7.7 years)

Eskelund*, Husby* et al. – Blood 2020

* *Similar results on clonal evolution during chemo:
Wong et al Nature. 2015 February 26; 518(7540): 552–555.
Wong et al NATURE COMMUNICATIONS | (2018) 9:455
Nead KT, Kim T, Joo L, et al. Blood Adv. 2024;8(19):5215-5224

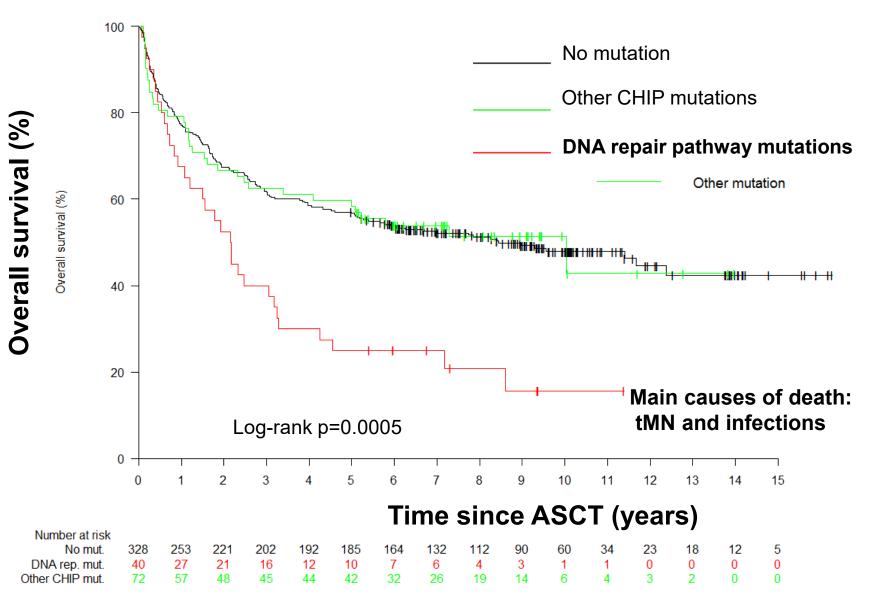
ARTICLE

Lymphoma

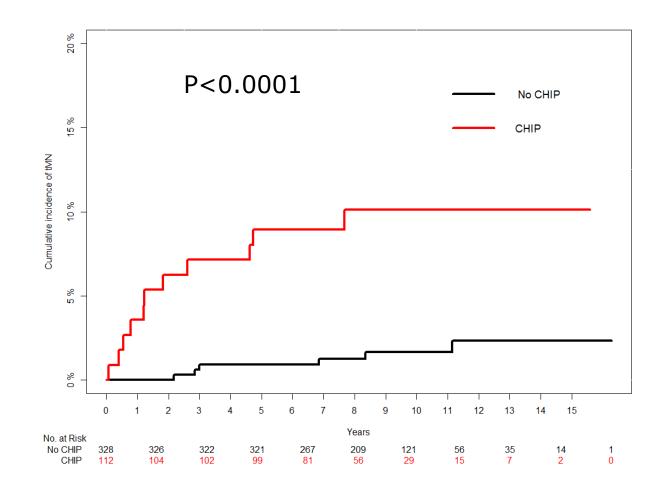


Clinical impact of clonal hematopoiesis in patients with lymphoma undergoing ASCT: a national population-based cohort study

Simon Husby^{1,2} · Francesco Favero ^{2,3} · Christian Nielsen^{4,5} · Betina S. Sørensen⁶ · John Bæch⁷ · Kathrine Grell^{8,9} · Jakob W. Hansen^{1,2,10} · Francisco G. Rodriguez-Gonzalez^{2,3} · Eva K. Haastrup¹¹ · Anne Fischer-Nielsen¹¹ · Pernille Andersen¹² · Bente Arboe¹ · Susanne G. Sækmose¹³ · Per B. Hansen¹⁴ · Ilse Christiansen¹⁵ · Erik Clasen-Linde¹⁶ · Lene Meldgaard¹⁷ · Lene H. Ebbesen¹⁸ · Erik K. Segel¹⁸ · Pär Josefsson¹⁷ · Michael Thorsgaard¹⁸ · Tarec C. El-Galaly¹⁵ · Peter Brown¹ · Joachim Weischenfeldt^{2,3} · Thomas S. Larsen^{5,19} · Kirsten Grønbæk^{1,2,10}


Main Research Question: Does CHIP influence the outcome of treatment after HD chemotherapy and ASCT for lymphoma

Approach: Nation-wide study of CHIP in BM samples from 440 pts treated with HD chemo and ASCT



The full national HDT cohort

t-CHIP after HD chemo and ASCT for lymphoma

Cumm Incidence of therapy related MN

CHIP is associated with increased risk of therapy related MN

Husby et al., Leukemia 2020 Dec;34(12):3256-3268

Multivariate analysis

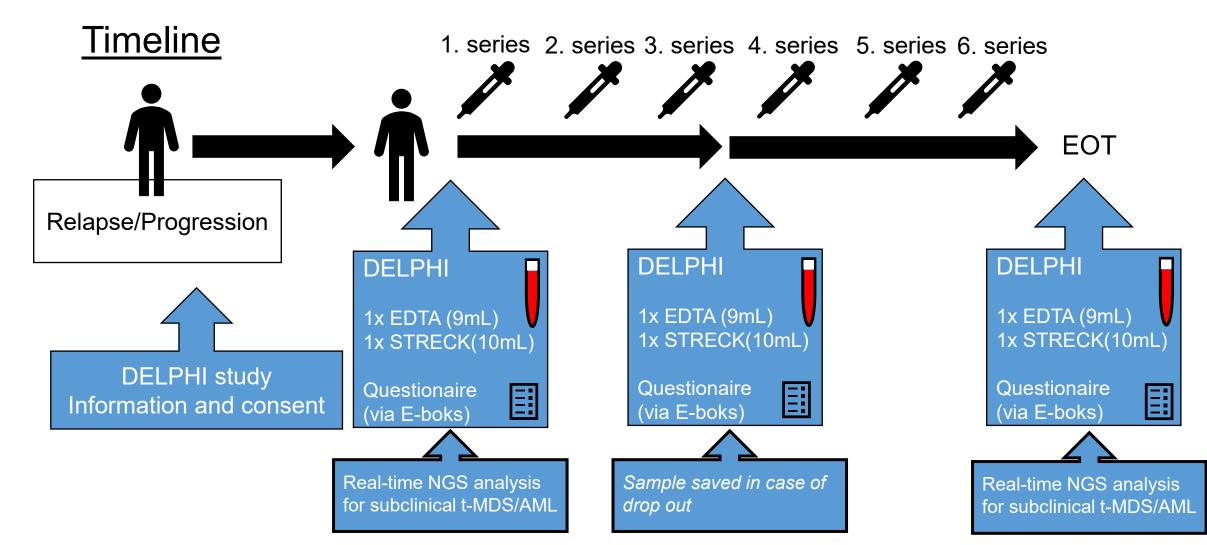
(Cox proportional hazards model)

						I	Hazard Ratio <mark>(</mark> 95% CI)	p value
Overall Survival								
Adjusted analysis*								
DNArepair mutations vs no DNArepair mutations, follow-up <1 year after harvest							1.16 (0.64–2.09)	0.63
DNArepair mutations vs no DNArepair mutations, follow-up ≥1 year after harvest		-	•				2·37 (1·44–3·90)	0.00067
Age ≥60 years vs <60 years		•)				1.49 (1.14–1.94)	0.0039
Male sex vs female sex							1.10 (0.83–1.45)	0.51
ASCT line ≥2 vs line 1							1·49 (1·12–1·99)	0.0062
				I				
	0	1	2	3	4	5		

*stratified by tumour type (aggressive vs. non-aggressive)

t-CHIP in lymphoma treated with HD chemo and ASCT

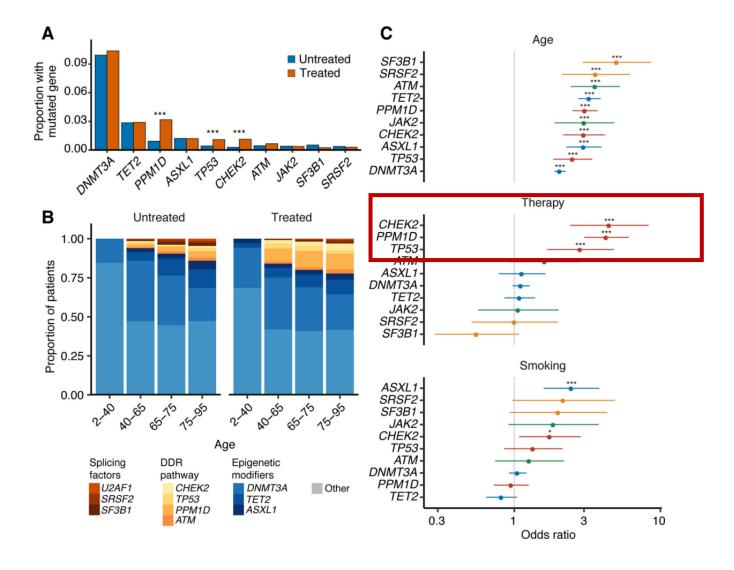
- t-CHIP-DNA repair mutations are associated with poor survival after autologous stem cell transplantation*- but other t-CHIP mutations do not impact survival after ASCT
- The number of previous series of chemotherapy is critical
- Age > 60 + t-CHIP is associated with poor outcome
- t-CHIP +mCA is associated with exceedingly poor outcome


*Similar results from Gibson et al JCO 2017

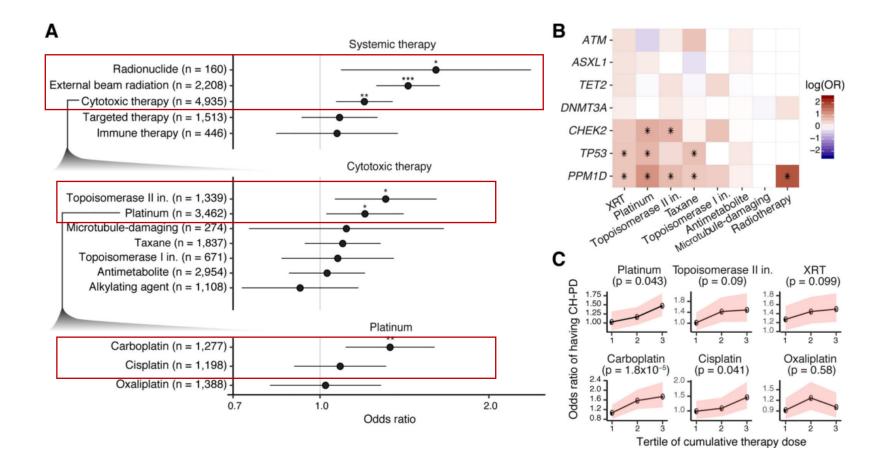
Unanswered questions

- How common is t-CHIP in elderly lymphoma pts? (at time of relapse)
- Impact on treatment toxicity and/or dose-reductions?
- Could these mutations identify elderly patients with poor outcomes after chemotherapy who should be offered alternative treatment regimens?

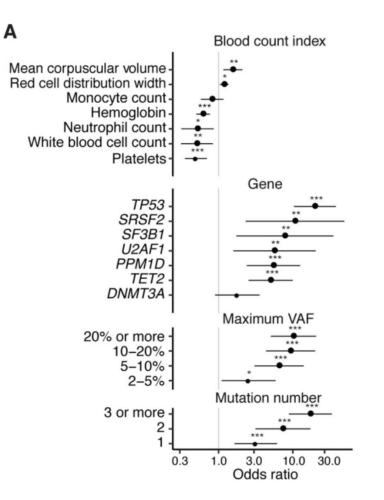
Whats next ? DELPHI study



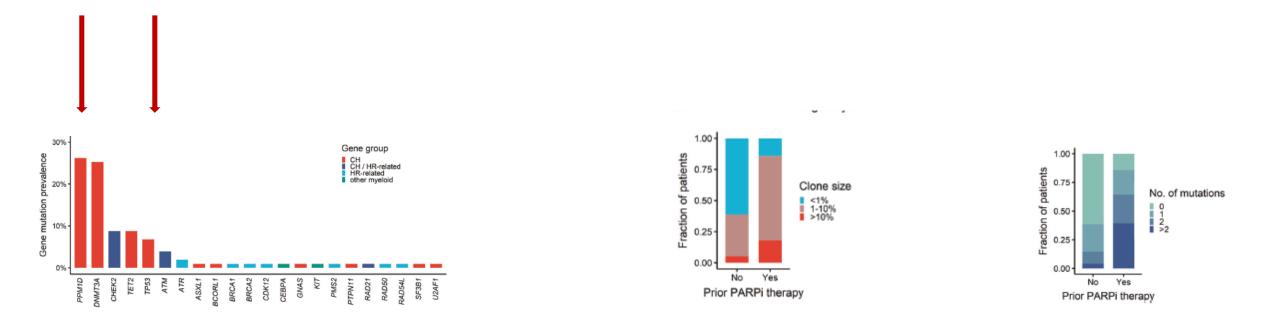
Danish Elderly Lymphoma Patient Hematopoietic Investigation (DELPHI)


Solid tumors, treatment and clonal hematopoiesis

Before blood drawing: 5,978 patients (59%) exposed to cancer therapy 4,160 (41%) treatment-naive.

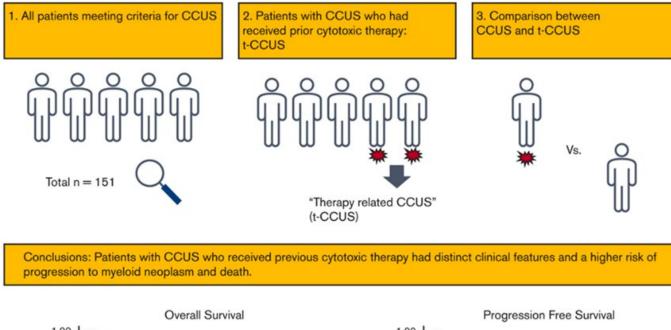

Bolton KL, Ptashkin RN, Gao T, et al. Nat Genet. 2020;52(11):1219-1226.

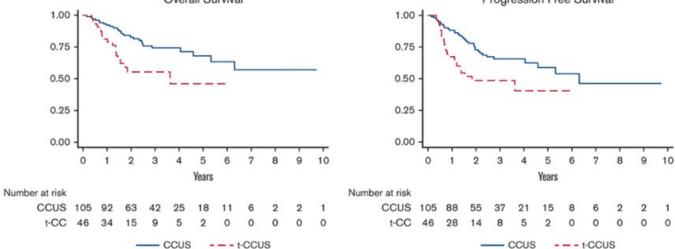
Specific cancer therapies and the development of CH with putative cancer-driver mutations


Bolton KL, Ptashkin RN, Gao T, et al. Nat Genet. 2020;52(11):1219-1226.

Risk of AML or MDS by clinical and CH mutational characteristics in patients with solid tumors

Bolton KL, Ptashkin RN, Gao T, et al. Nat Genet. 2020;52(11):1219-1226.


PARP inhibitors are associated with increased clone size, and more CH mutations



 OBS: cfDNA analyses also detects clonal hematopoiesis – thus mutations in buffy coat must be subtracted

> Arends CM, Kopp K, Hablesreiter R, et al. Leukemia. 2024;38(6):1378-1389. PARPi and MDS/AML: Reviewed in Lancet Hematology 2021,;8 .e122-34

Patients with t-CCUS have higher risk of progression and death

Li M, Baranwal A, Gurney M, et al. Blood Adv. 2024;8(12):3130-3139.

t-CHIP/t-CCUS – when does it matter?

- t-CHIP mutations in DNA repair genes (TP53 PPM1D and CHEK2) are associated with poor outcome
- tCHIP +mCA are associated with poor outcome
- Treatment with radiation, platinum, topoisomerase inhibitors, PARP inhibitors and lenalidomide particularly select for clones with mutated DNA repair genes
- CAR-T?
- Age > 60 + t-CHIP is associated with poor outcome
- t-CCUS have poorer outcome than CCUS
- Solution? Elderly patients with relapse tested for t-CHIP before 2.line + chemo is initiated, and alternative lesser toxic regimens could be considered
- Clinical trials?

Could CHIP and CCUS clinical interception trials improve outcome?

What would be required from pre-emptive therapy in CHIP/CCUS?

- Cautious genetic testing based on informed consent
- Identification of high-risk patients is essential
- Drugs should be largely non-toxic, without affecting the individuals' quality of life

Ongoing clinical intervention trials in CCUS/LR-MDS

- NCT05102370: Enasidenib for Patients With Clonal Cytopenia of Undetermined Significance and Mutations in IDH2 (single arm, Phase 2, 15 pts)
- NCT05030441: Ivosidenib Clonal Cytopenia of Undetermined Significance and Mutations in IDH1 (single arm phase 2, 20pts)
- NCT05483010: Statins in Patients with Clonal Cytopenia of Undetermined Significance (CCUS) and Myelodysplastic Syndromes (MDS) (single arm, Phase 2, 16 pts)
- NCT06063486: Curcumin to Improve Inflammation and Symptoms in Patients With Clonal Cytopenia of Undetermined Significance, Low Risk Myelodysplastic Syndrome, and Myeloproliferative Neoplasms (randomized, Phase 2, 30 pts)
- NCT05641831: A Randomized Double-Blinded Placebo-Controlled Phase II Multi-Center Study of Inflammation Modification of Canakinumab to Prevent Leukemic Progression of Clonal Cytopenias of Unknown Significance (CCUS): IMPACT Study (randomized Phase 2, 94 pts)
- NCT06802146: Early Intervention in High Risk CCUS. Open-label, multicenter pilot study testing the feasibility and safety of early pharmacologic intervention, decitabine/cedazuridine, in participants with higher-risk clonal cytopenia of unknown significance (CCUS)(pilot 30 in the intervention arm total 108)

NCT04741945: Repurposing Metformin as a leukemia-preventive drug in CCUS and LR-MDS (Phase 2 single arm 40 pts; 40/40 enrolled)

NCT03682029: Epigenetics, Vitamin C, and Abnormal Blood Cell Formation - Vitamin C in Patients With Low-Risk Myeloid Malignancies (EVITA) (A randomized, placebo-controlled, blinded, parallel-group clinical phase 2 study, 109 pts, enrollment completed).

(ClinicalTrials.gov)

Acknowledgements

Simon Husby **Christian Winter Eskelund** Stine Ulrik Mikkelsen Jakob Werner Hansen Ali Al-Mousawi **Dicte Træden Amalie Bach Nielsen** Anders Vallentin Mathias Heldbo Pei Meng **Astrid Østergaard Mortensen** Krista Smidt Beck Morten Tulstrup Heidi Ottesen Naomi Anja Holm Vestergaard Stine Kjær Morthorst -all the others

Van Andel Institute, Grand Rapids, MI, USA

Peter A. Jones Zachary Madaj Peter Laird Toshinori Hinoue Steve Baylin Ryan Burgos Stacey Thomas - all the others Life Science Faculty, University of Copenhagen Jens Lykkesfeldt

BRIC, University of Copenhagen

Jakob Schmidt Jespersen, Joachim Weischenfeldt

Dept. of Clinical Genetics, Rigshospitalet Mette Klarskov Andersen, Jack Cowland

Danish and Nordic Lymphoma groups Mats Jerkeman Tarec El-Galaly Christian Geisler

- all the others

All participants in the Danish national program for translational hematology (PTH)

All patients and their families

University of Southern California, Los Angeles, CA, USA Casey O'Connell

Dept. of Hematology, Rigshospitalet Bo Kok Mortensen

Dept. of Hematology, Aalborg University Hospital Marianne Tang Severinsen

Providers of grants and financial support

Van Andel Institute - Stand Up to Cancer Epigenetics Dream Team The Novo Nordisk foundation The Danish Cancer Society Independent Research Fund Denmark Greater Copenhagen Health Science Partners

EPIGENETICS DREAM TEAM

fonden

novo nordisk

