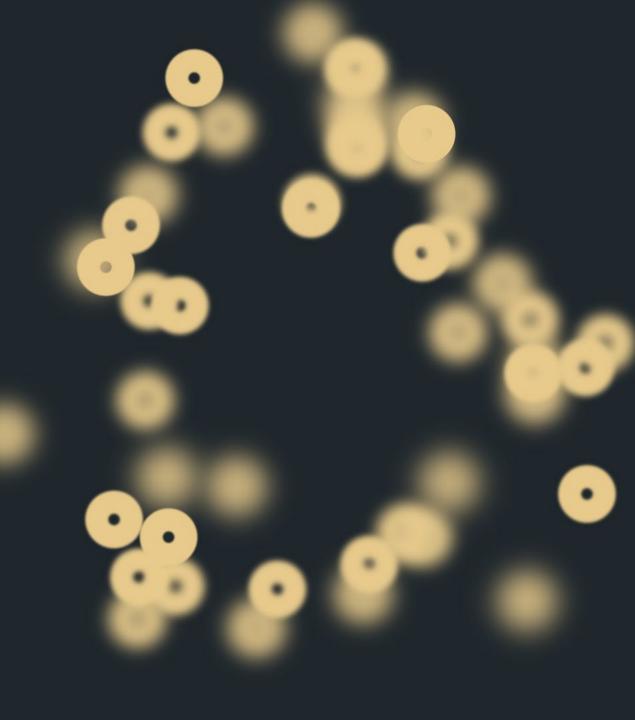
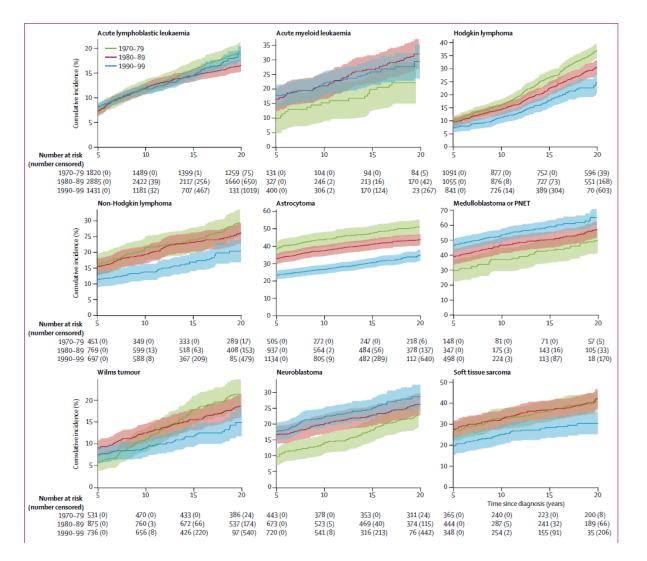


EHA-SWG Scientific Meeting on Recent Advances in the Pathogenesis and Treatment of Secondary Acute Myeloid Leukemias



sAML in childhood (including after gene-therapy)

Pietro Merli


Berlin, 26/04/2025

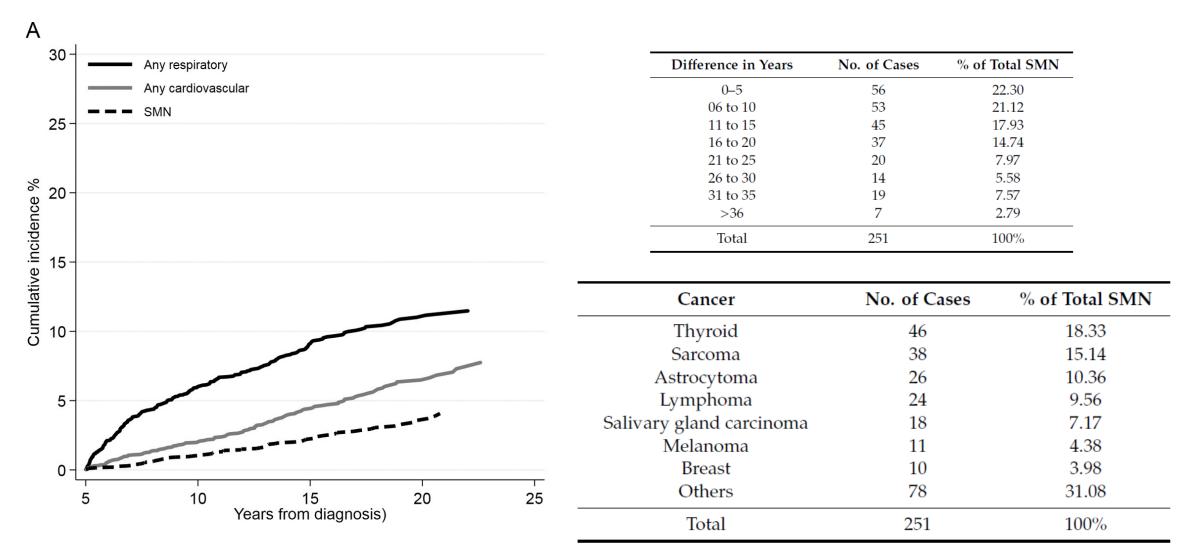
Long term survivors of pediatric cancers

	All survivors (n=23 601)	Diagnosis decade		Siblings (n=5051)	
		1970-79 (n=6223)	1980-89 (n=9420)	1990-99 (n=7958)	-
Sex					
Female	10947 (46%)	2900 (47%)	4321 (46%)	3726 (47%)	2643 (52%)
Male	12654 (54%)	3323 (53%)	5099 (54%)	4232 (53%)	2408 (48%)
Race or ethnicity					
Non-Hispanic white	19346 (82%)	5533 (89%)	7796 (83%)	6017 (76%)	4377 (90%)
Non-Hispanic black	1500 (6%)	241 (4%)	577 (6%)	682 (9%)	151 (3%)
Hispanic	1784 (8%)	292 (5%)	616 (7%)	876 (11%)	214 (4%)
Other	862 (4%)	135 (2%)	388 (4%)	339 (4%)	140 (3%)
Age at diagnosis, years					
0-9	14811 (63%)	3830 (62%)	6111 (65%)	4870 (61%)	
10-20	8790 (37%)	2393 (39%)	3309 (35%)	3088 (39%)	
Age at last follow-up or death, year	s				
<20	3954 (17%)	402 (7%)	1120 (12%)	2432 (31%)	419 (8%)
20-29	9293 (39%)	953 (15%)	4354 (46%)	3986 (50%)	1591 (32%)
30-39	7257 (31%)	2651 (43%)	3088 (33%)	1518 (19%)	1734 (34%)
40-49	2693 (11%)	1816 (29%)	855 (9%)	22 (<1%)	1047 (21%)
≥50	404 (2%)	401 (6%)	3 (<1%)	0 (0%)	260 (5%)
Diagnosis					
Acute lymphoblastic leukaemia	6148 (26%)	1824 (29%)	2892 (31%)	1432 (18%)	
Acute myeloid leukaemia	866 (4%)	131 (2%)	333 (4%)	402 (5%)	
Other leukaemia*	303 (1%)	74 (1%)	105 (1%)	124 (2%)	
Astrocytomas	2594 (11%)	509 (8%)	945 (10%)	1140 (14%)	
Medulloblastoma, PNET	997 (4%)	148 (2%)	349 (4%)	500 (6%)	
Other CNS tumours†	645 (3%)	79 (1%)	206 (2%)	360 (5%)	
Hodgkin lymphoma	2996 (13%)	1097 (18%)	1057 (11%)	842 (11%)	
Non-Hodgkin lymphoma	1932 (8%)	453 (7%)	774 (8%)	705 (9%)	··.
Wilmstumour	2148 (9%)	534 (9%)	877 (9%)	737 (9%)	
Neuroblastoma	1838 (8%)	443 (7%)	674 (7%)	721 (9%)	
Soft tissue sarcoma	1162 (5%)	365 (6%)	448 (5%)	349 (4%)	
Ewing sarcoma	714 (3%)	203 (3%)	277 (3%)	234 (3%)	
Osteosarcoma	1205 (5%)	360 (6%)	474 (5%)	371 (5%)	
Other bone tumours‡	53 (<1%)	3 (<1%)	9 (<1%)	41 (1%)	

Long term survivors of pediatric cancers

4 sAML in childhood (including after gene-therapy)

Gibson TM et al., Lancet Oncol 2018


Long term survivors of pediatric cancers

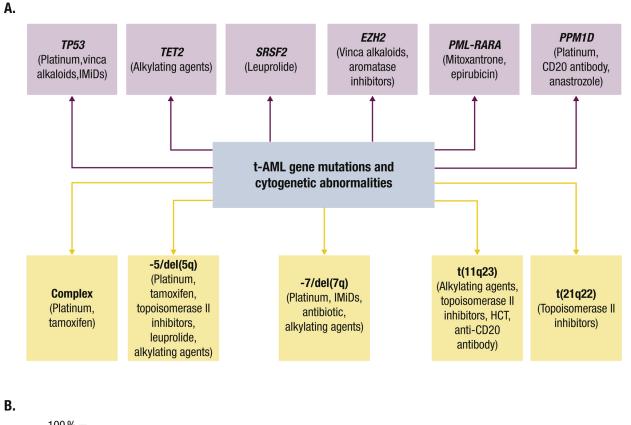
Endocrine Thyroid nodules requiring	5.9% (5.3-6.4)			(p value)	(p value)	(p value)
Thyroid nodules requiring		3.6% (3.2-3.9)	2.8% (2.5-3.2)	<0.0001	<0.0001	0.0033
surgery	1.9% (1.6-2.3)	1.2% (0.9–1.4)	0.9% (0.7-1.1)	0-00017	<0.0001	0.10
Gonadal dysfunction	3.5% (3.1-4.0)	1.8% (1.5-2.1)	0.9% (0.7-1.0)	<0.0001	<0.0001	<0.0001
Diabetes mellitus requiring insulin	0.4% (0.2-0.5)	0.5% (0.3-0.6)	0.9% (0.7-1.0)	0.35	0.00014	0-0015
Second malignant neoplasms	2.7% (2.3-3.1)	2.4% (2.1-2.7)	1.9% (1.6-2.2)	0.31	0.0033	0.024
Cardiovascular	4.8% (4.3-5.3)	5.6% (5.2-6.1)	4.9% (4.5-5.3)	0-018	0.74	0.023
Heart failure	0.9% (0.6–1.1)	1.0% (0.8-1.2)	0.8% (0.6–0.9)	0.32	0.49	0.057
Myocardial infarction	0.6% (0.4-0.8)	0.5% (0.4-0.6)	0.4% (0.3-0.5)	0-47	0.14	0.38
Stroke	1.5% (1.2-1.8)	2.4% (2.1-2.7)	2.0% (1.7-2.3)	<0.0001	0-036	0.032
Thromboembolic disease	2.2% (1.8-2.5)	2.1% (1.8-2.4)	2.0% (1.7-2.3)	0.75	0-40	0.54
Neurological	4.8% (4.2-5.3)	5.3% (4.9-5.8)	4.3% (3.9-4.7)	0.10	0.17	0.00058
Memory problems	1.7% (1.4-2.0)	2.5% (2.2-2.8)	2.8% (2.5-3.1)	0.00047	<0.0001	0.24
Balance problems	0.6% (0.4-0.8)	1.0% (0.8-1.2)	1.2% (1.0-1.4)	0.012	<0.0001	0.13
Paralysis	2.7% (2.3-3.1)	2.2% (1.9-2.5)	0.2% (0.1-0.3)	0.059	<0.0001	<0.0001
Hearing Loss	3.0% (2.6-3.5)	4.2% (3.8-4.6)	5.7% (5.2-6.1)	0.00010	<0.0001	<0.0001
Visual impairment	4.5% (4.0-5.0)	4.1% (3.8-4.5)	4.1% (3.7-4.5)	0.34	0-29	0.91
Cataracts requiring surgery	0.8% (0.6-1.1)	1.0% (0.8-1.2)	1.3% (1.1-1.5)	0.18	0-0040	0-084
Blindness	4.0% (3.5-4.5)	3.5% (3.1-3.8)	3.1% (2.8-3.5)	0.11	0.0043	0.14
Gastrointestinal	2.3% (2.0-2.7)	2.3% (2.1-2.6)	1.5% (1.3-1.8)	0.95	0-00037	<0.0001
Intestinal obstruction	2.0% (1.7-2.4)	1.9% (1.7-2.2)	1.1% (0.9-1.3)	0.64	<0.0001	<0.0001
Hepatitis	0.3% (0.2-0.4)	0.4% (0.3-0.5)	0.4% (0.3-0.5)	0.22	0-28	0.88
Musculoskeletal	5.8% (5.2-6.4)	4.4% (4.0-4.7)	3.3% (2.9-3.6)	<0.0001	<0.0001	<0.0001
Amputation	5.1% (4.6-5.6)	2.9% (2.5-3.2)	1.2% (1.0-1.4)	<0.0001	<0.0001	<0.0001
Major joint replacement	0.8% (0.6-1.1)	1.6% (1.4–1.9)	2.2% (2.0-2.5)	<0.0001	<0.0001	0.0015
Respiratory	0.7% (0.5-0.9)	0.5% (0.4-0.7)	0.8% (0.6–0.9)	0.37	0.42	0.051
Pulmonary fibrosis	0.2% (0.1-0.3)	0.3% (0.2-0.4)	0.7% (0.5-0.8)	0.21	<0.0001	0.00078
Renal	0.5% (0.4-0.7)	1.0% (0.8-1.2)	0.9% (0.8-1.1)	0.0010	0-0026	0.75
Dialysis	0.5% (0.3-0.7)	0.9% (0.7-1.1)	0.9% (0.7-1.1)	0.0009	0.0026	0.72
Data are % (95% CI), unless otherwise s	specified.					

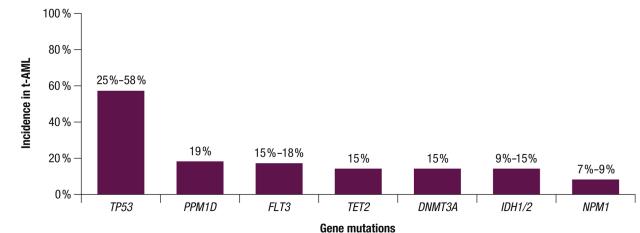
Gibson TM et al., Lancet Oncol 2018

Second malignant neoplasms (SMNs)

sAML

Mechanisms driving t-AML pathogenesis (non-mutually exclusive):

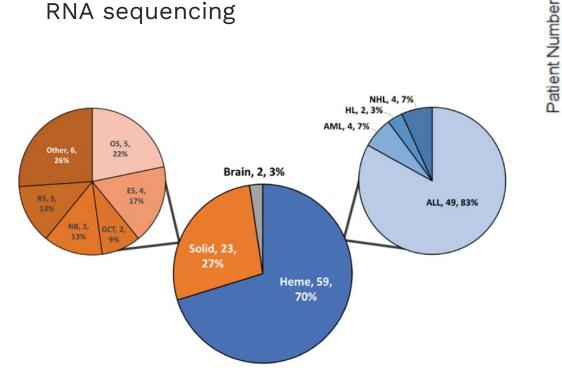

- 1) direct induction of a fusion oncogene through chromosomal translocation;
- 2) induction of genome Pathogenesis of therapy-related AML instability; **Direct induction** Induction of Selection of pre-existing Abnormal chemotherapy radiation-3) or genome instability of a fusion oncogene cell clones microenvironment Stroma induced damage to the bone Radiotherapy creating marrow а pro-Mutant p53 Chemotherapy- and/or radiation-induced **DNA** damage response pathways stromal damage Alkylating agents Transcription ATR-ATRI inflammatory, pro-leukemic factory environment; Norma p53 Leukemogenic environment Apoptosis Checkpoint selection of Proliferation pre-existing 4) arrest without repair to DNA damage DNA repair treatment-resistant Genom Proliferation instability hematopoietic cell clones

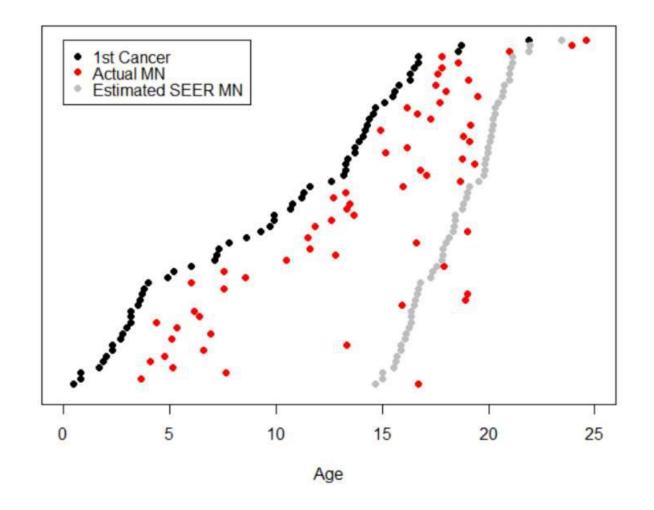

Heuser, 2016; McNerney et al., 2017

eha

7 sAML in childhood (including after gene-therapy)

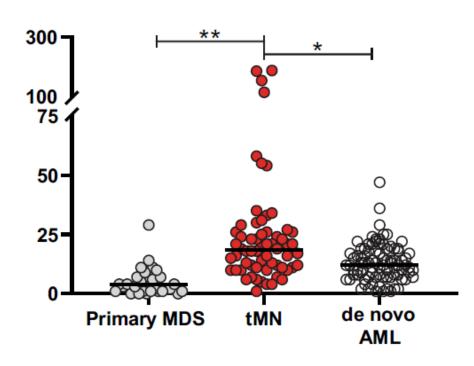
Mutational landscape

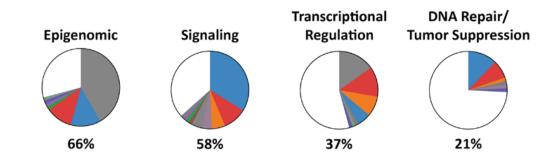




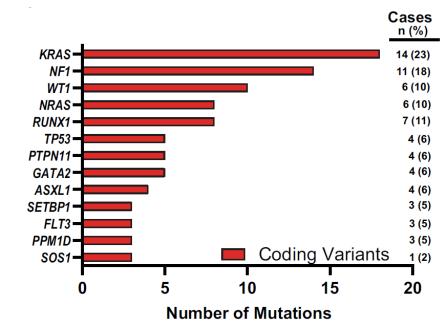
Pediatric Landscape

- 84 pediatric tMN cases (tMDS: n = 28, tAML: n = 56)
- whole exome, whole genome, and/or RNA sequencing





9 sAML in childhood (including after gene-therapy)


Pediatric Landscape

MISSENSE FRAMESHIFT NONSENSE SILENT PROTEINDEL PROTEININS SPLICE_REGION SPLICE UTR_3

Structural variation

Cancer predisposition syndromes

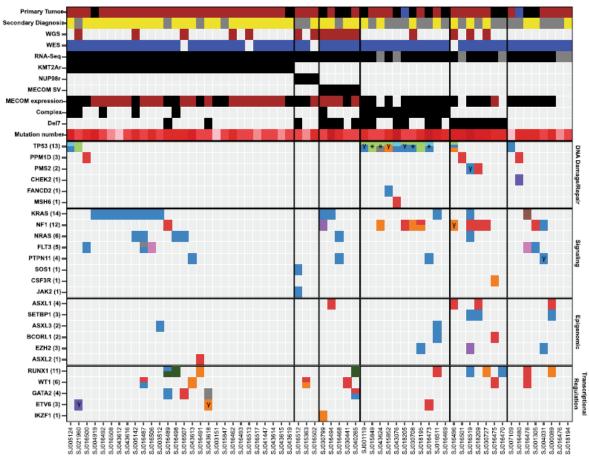
13 of 84 patients (15%, 95% exact binomial CI: 8.5–25.0%) had germline alterations; more common in tMN than the published prevalence of 8.5–10% in other groups of children with cancer

Case	1º Diagnosis	2° Dx	Gene	RefSeq accession	Mutation type	Amino acid change	VAF	REVEL score	ACMG classification (criteria)
SJ016504	NHL	tAML	ARID2	NM_152641	nonsense	p.R1272X	0.53		LP (PVS1, PM2)
SJ016509	ALL	tMDS	CREBBP	NM_004380	missense	p.R1446C	0.35	0.952	LP (PS2, PM2, PP3)
SJ043618	ALL	tAML	ETV6	NM_001987	nonsense	p.R359X	0.56		P (PVS1, PS3, PM2, PP1)
SJ021960	ALL	tMDS	ETV6	NM_001987	frameshift	p.N386fs	0.30		P (PVS1, PS3, PM2)
SJ004031	ALL	tMDS	EZH2	NM_001203247	missense	p.R685H	0.43	0.907	LP (PM2, PP2, PP3)
SJ016496	ALL	tAML	NF1	NM_000267	nonsense	p.R2496X	0.50		P (PVS1, PM2, PP1)
SJ016519	ALL	tAML	PMS2	NM_000535	missense	p.S46l	0.34	0.939	LP (PS3, PP1, PM3, PP3)
SJ004031	ALL	tMDS	PTPN11	NM_002834	missense	p.S502L	0.39	0.976	LP (PM1, PM2, PP2, PP3)
SJ043615	ALL	tAML	RPL22	NM_000983	splice	E40_E3splice	0.44		LP (PVS1, PM2)
SJ016463	Osteosarcoma	tMDS	TP53	NM_000546	missense	p.R337C	0.58	0.715	P (PS3, PM1, PM2, PP2, PP3)
SJ001119	Osteosarcoma	tAML	TP53	NM_000546	missense	p.R337L	0.58	0.765	P (PS3, PM1, PM2, PM5, PP3)
SJ015852	ALL	tMDS	TP53	NM_000546	nonsense	p.W53X	0.52		P (PVS1, PM2, PP4)
SJ018205	Anaplastic Astrocytoma	tMDS	TP53	NM_000546	missense	p.H179Y	0.50	0.948	P (PS2, PS3, PM1, PM2, PP1, PP3)
SJ016486	ALL	tAML	TRIP11	NM_004239	frameshift	p.Q1367fs	0.40		LP (PVS1, PM2)

Pediatric Landscape

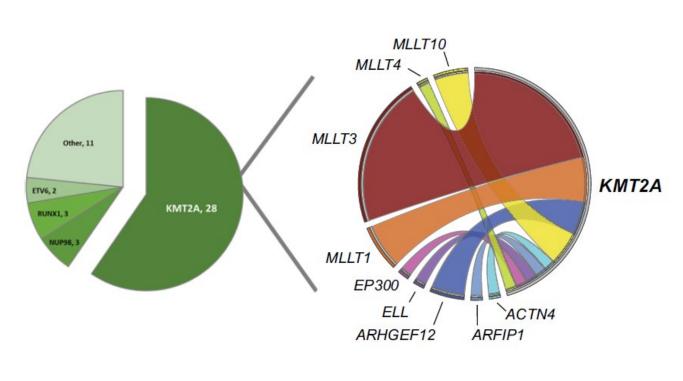
Y Germline I Mosaic

Mutation Types 🔤 LOH 🔳 Missense 📕 Frameshift 📕 Nonsense 📕 Protein DEL 📕 Protein INS 📓 Splice_Region 📕 Splice 🔤 ITD 🔤 Copy number loss 🔳 In-frame Fusion

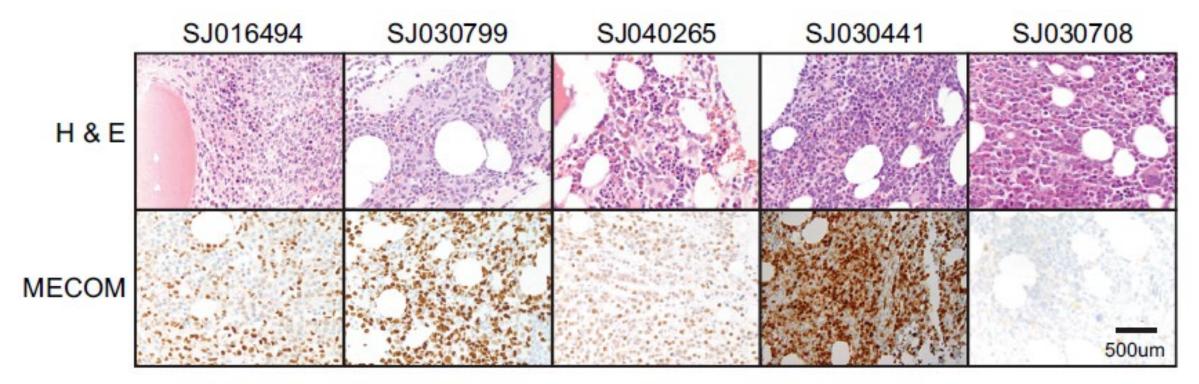

Primary Tumor 🔳 Brain 📕 Heme 🔳 Solid

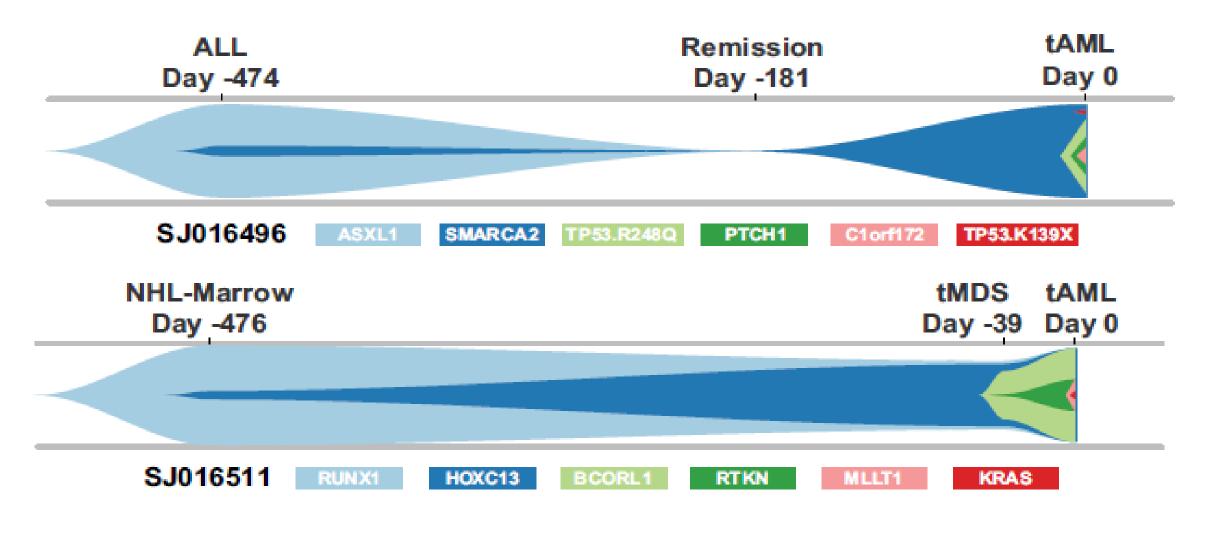
Secondary Diagnosis LAML

RNA-Seq RNA Seq Not Done


MECOM expression High Low

Mutation number 1-5 6-7 10-19 20-29 30-60 115-188



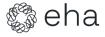

Focus on MECOM

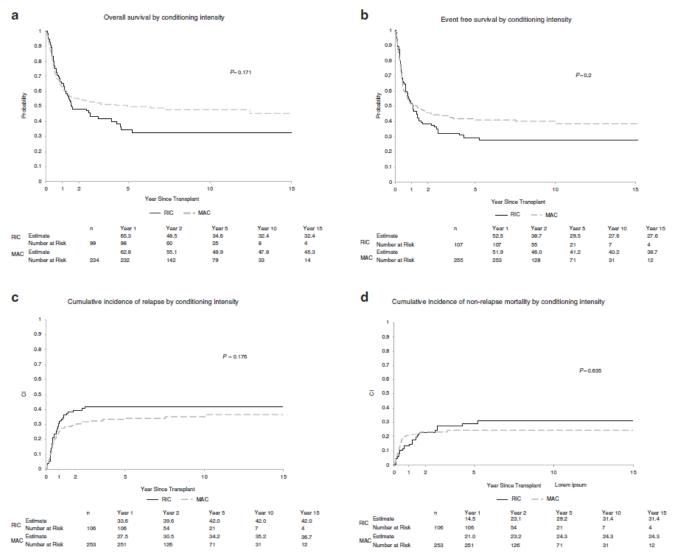
Samples

Clonal evolution of pediatric tMN

14 sAML in childhood (including after gene-therapy)

Pediatric Landscape - conclusions


- KMT2Ar are the most common driver alterations in this pediatric tMN cohort along with Ras/MAPK pathway mutations. Somatic TP53 alterations were also frequent, but these mutations appeared to arise after chemotherapy, unlike adult tMN;
- MECOM overexpression is frequent, and in some of these cases the overexpression was driven by enhancer hijacking;
- pediatric tMN-defining variants arise most commonly as a consequence of cytotoxic therapy, and that these malignant clones can be identified, on average, >1 year before morphologic evidence of neoplasm.
- unlike adults with tMN, scarce evidence of pre-existing minor tMN clones;
- rare cases of lineage switch disease rather than true secondary neoplasms;



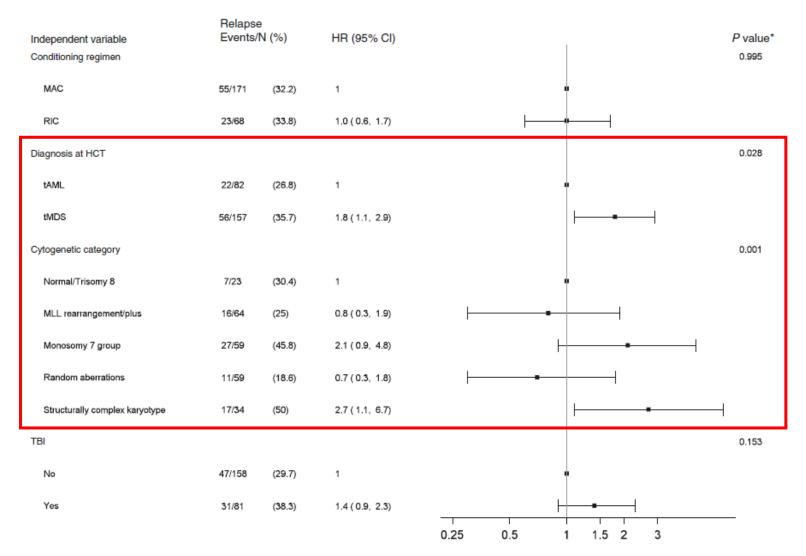
- 401 patients from 54 centers
- Retrospective analysis
- US, Europe, Mexico, Australia
- tMDS or tAML who were aged 21 years or younger at the time of HCT and who received transplants
- between 1995 and 2017
- Therapy-related myeloid neoplasms were defined according to the 2017 World Health Organization (WHO) criteria
- Patients with known inherited genetic predisposition disorders (like Fanconi anemia, or Li-Fraumeni syndrome) were not included in this study.

Primary diagnosis					0.130
ALL	81 (20.2)	62 (22.7)	17 (13.8)	2 (40.0)	
AML	13 (3.2)	8 (2.9)	5 (4.1)	0 (0.0)	
Other malignant heme disorder ^b	39 (9.7)	23 (8.4)	16 (13.0)	0 (0.0)	
Solid/brain tumor	156 (38.9)	104 (38.1)	50 (40.7)	2 (40.0)	
Unknown	112 (27.9)	76 (27.8)	35 (28.5)	1 (20.0)	
Diagnosis at HCT					0.104
tMDS	261 (65.1)	175 (64.1)	82 (66.7)	4 (80.0)	
tAML	122 (30.4)	93 (34.1)	29 (23.6)	0 (0.0)	
Unknown	18 (4.5)	5 (1.8)	12 (9.8)	1 (20.0)	
Age at HCT in years					0.270
Mean ± SD	12.6 ± 5.0	12.4 ± 5.0	13.0 ± 5.0	10.2 ± 5.0	
Median (range)	12.9 (1.2-21.0)	12.5 (1.2–21.0)	13.5 (2.8-21.0)	10.1 (4.8–15.7)	
Unknown	1 (0.2)	0 (0.0)	0 (0.0)	1 (20.0)	
Time from tMDS/tAML to HCT in months					0.097
Mean ± SD	6.5 ± 8.7	5.9 ± 8.3	7.5 ± 9.4	18.0±9.6	
Median (range)	3.9 (0.3-67.2)	3.8 (0.3-67.2)	4.4 (0.9-60.7)	22.9 (7.0-24.1)	
Unknown	7 (1.7)	3 (1.1)	2 (1.7)	2 (40.0)	
Donor type					<0.001
MSD	103 (25.7)	77 (28.2)	25 (20.3)	1 (20.0)	
MUD	115 (28.7)	78 (28.6)	35 (28.5)	2 (40.0)	
MMRD	49 (12.2)	21 (7.7)	28 (22.8)	0 (0.0)	
MMUD	28 (7.0)	22 (8.1)	6 (4.9)	0 (0.0)	
Cord	73 (18.2)	55 (20.2)	18 (14.6)	0 (0.0)	
Unknown	33 (8.2)	34 (12.5)	13 (10.6)	2 (40.0)	
Graft source					0.006
BM	223 (55.6)	160 (58.6)	61 (49.6)	2 (40.0)	
PBSC	101 (25.2)	56 (20.5)	44 (35.8)	1 (20.0)	
Cord	73 (18.2)	55 (20.2)	18 (14.6)	0 (0.0)	
Unknown	4 (1.0)	2 (0.7)	0 (0.0)	2 (40.0)	
Cytogenetic category					0.138
MLL rearrangement	69 (17.2)	54 (19.8)	15 (12.2)	0 (0.0)	
Monosomy 7	67 (16.7)	44 (16.1)	23 (18.7)	0 (0.0)	
Normal/trisomy 8	26 (6.5)	18 (6.6)	6 (4.9)	2 (40.0)	
Random aberrations	65 (16.2)	42 (15.4)	23 (18.7)	0 (0.0)	
		()	44 (40.0)	0 (0 0)	
Structurally complex karyotype	36 (9.0)	20 (7.3)	16 (13.0)	0 (0.0)	

Sharma A et al., Bone Marrow Transplant 2021

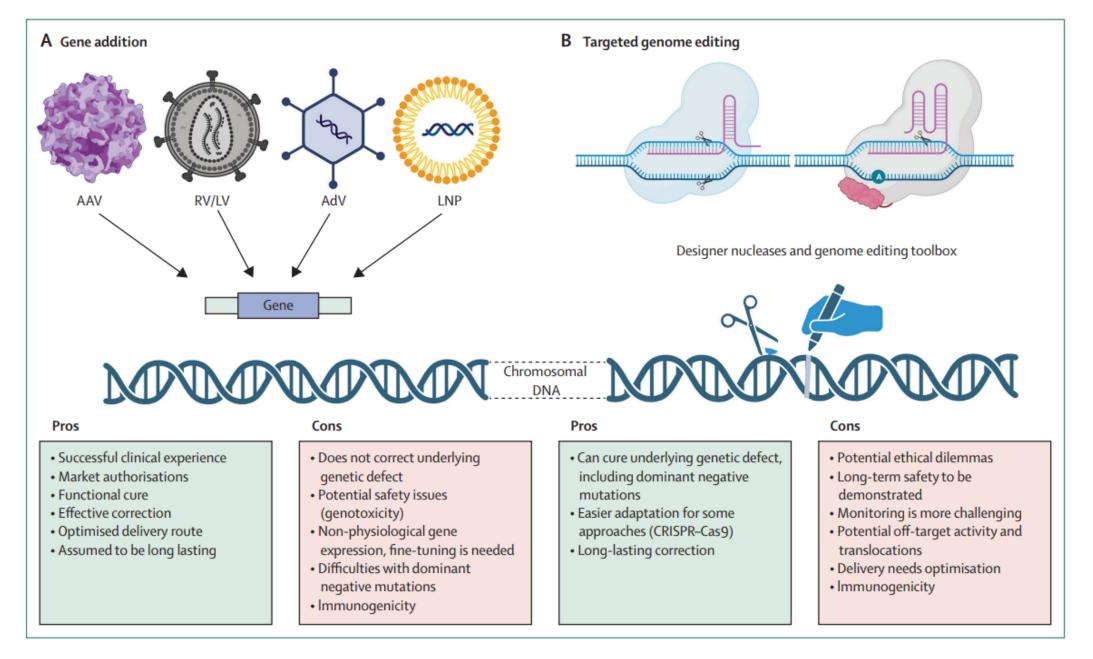
17 sAML in childhood (including after gene-therapy)

Sharma A et al., Bone Marrow Transplant 2021


The primary cause of death	Conditioning intensity									
	MAC N (%)	RIC N (%)	Unknown N (%)	Total N (%)						
Total number of deaths	151	81	3	235						
Treatment-related	58 (38.4)	17 (20.9)	1 (33.3)	68 (32.3)						
Acute GVHD	7 (4.6)	1 (1.2)	0 (0.0)	8 (3.4)						
Chronic GVHD	8 (5.3)	4 (4.9)	0 (0.0)	12 (5.1)						
Graft rejection or failure	6 (4.0)	0 (0.0)	0 (0.0)	6 (2.6)						
Infection ^a	11 (7.3)	5 (6.2)	0 (0.0)	16 (6.8)						
Organ failure (not due to GVHD or infection)	20 (13.3)	6 (7.4)	0 (0.0)	26 (11.1)						
Pulmonary complications	6 (4.0)	1 (1.2)	1 (33.3)	8 (3.4)						
Malignancy ^b	3 (2.0)	7 (8.6)	0 (0.0)	10 (4.3)						
Relapse/persistence/progression of disease	70 (46.4)	37 (45.7)	1 (33.3)	108 (46.0)						
Other	2 (1.3)	1 (1.2)	0 (0.0)	3 (1.3)						
Unknown	18 (11.9)	19 (23.5)	1 (33.3)	38 (16.2)						

GVHD graft-versus-host disease, MAC myeloablative conditioning, RIC reduced-intensity conditioning.

^aInfection (isolation of an organism leading to sepsis/organ failure with no other ascertainable cause of death in the previous 7 days)


^bMalignancy refers to a malignancy unrelated to the therapy-related myeloid neoplasm diagnosis.

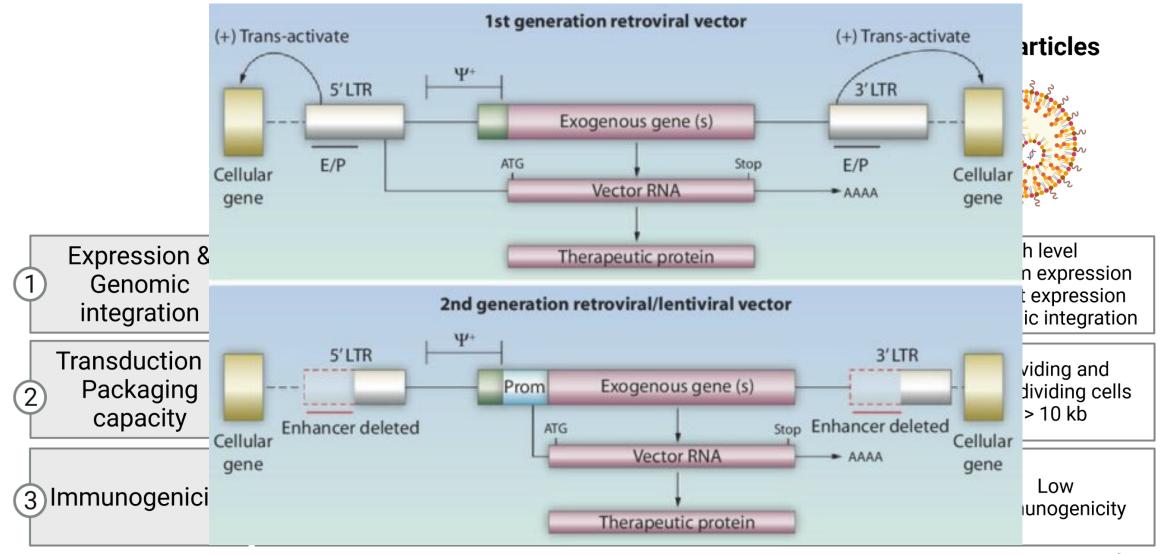
Sharma A et al., Bone Marrow Transplant 2021

Schambach A et al., Lancet 2024

Gene therapy for blood and metabolic disorders

Gene therapy-based treatments are currently under development for a range of hematological, immunological and metabolic disorders

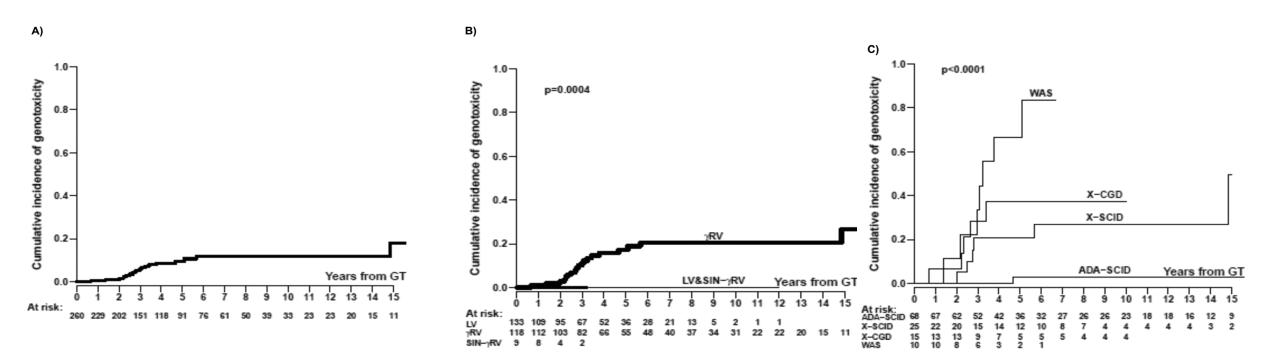
ALD, adrenoleukodystrophy; MLD, metachromatic leukodystrophy.


Scott CT, DeFrancesco L. Nat Biotechnol 2016;34(6):600–7. Tani K. Int J Hematol 2016;104(1):42–72. Clément F, et

21 Presentation title by Insert > Header / Footer texts_{al. Stem Cell Investig 2017;4:67}.

Beitelshees M, et al. Discov Med 2017;24(134):313-22.

Vectors



Genotoxicity of different vectors

Study	Disease	Events	s n	_PYO	Incidence rate of Genotoxicity (x100 PYO)
Gaspar, 2006	ADA-SCID	0	1	2.2	
Kohn, 2008	ADA-SCID	0	3	45	•
Gaspar, 2011	ADA-SCID	0	6	20.3	• · · · · · · · · · · · · · · · · · · ·
Candotti, 2012	ADA-SCID	0	10	61	•
Otsu, 2015	ADA-SCID	0	2	16	
Shaw, 2017	ADA-SCID	0	10	50.2	•
Aiuti, 2020	ADA-SCID	1	22	276.6	
Ajuti, 2020	ADA-SCID	0	2	4.8	
Migliavacca, 2020	ADA-SCID	0	12	26.7	• · · · · · · · · · · · · · · · · · · ·
Braun, 2014	WAS	9	10	33.9	
Malech, 1997	X-CGD	0	5	47	•
Ott, 2006	X-CGD	2	2	4.6	
Kang, 2010	X-CGD	0	3	6.8	
Hyoung Jin Kang, 2011	X-CGD	0	2	8	
Siler, 2015	X-CGD	2	2	4.1	
Uchiyama, 2019	X-CGD	1	1	2.7	
Thrasher, 2005	X-SCID	0	2	1	
Chinen, 2007	X-SCID	0	3	5.4	
Gaspar, 2011	X-SCID	1	10	62.8	 : : : : : :
Six/Ginn, 2020	X-SCID	5	10	75.9	
γ-RV 0.99 (95% CI= 0. I ² =85.9%, τ ² =4.99, p _{LRT} *		21	118	755	0 10 20 30 40 50 60
Hacein-Bey-Abina, 2014 SIN- γ-RV 0 (95%CI=0-1	X-SCI 9.8)	D 0	9	18.6	0 10 20 30 40 50 60

					0	10	20	30	40	50	DU.
	Gaspar, 2014	ADA-SCID	0	5	5 🗕			-		_	-
notoxicity (x100 PYO)	Kohn, 2020	ADA-SCID	0	20	35 🚥						
	Kohn, 2020	ADA-SCID	0	10	20 🖛		-				
	Kohn, 2020	LAD	0	1	0.5 -	1	-	-		-	-
	Morris, 2017	WAS	0	1	1.7 🖛	-	-	-	-	-	
	Labrosse, 2019	WAS	0	5	22.4 -	-					
	Ferrua, 2019	WAS	0	17	70.7 🖛	-					
	Magnani, 2020	WAS	0	9	56.3 -	_					
	Kohn, 2020	X-CGD	0	9	14.3 🛏	_	_				
	Magnani, 2020	X-CGD	0	4	7.1 -		_	_	_	_	
	De Ravin, 2019	X-SCID	0	5	22.2		- 1				
	Mamcarz, 2019	X-SCID	0	11	18.9 -		_				
	Barshop, 2020	Cystinosis	0	1	0.5 -	-	-	-		-	-
	AvroBio, 2020	Fabry		4	3.8 -	-	-	1	-	1	_
	AvroBio, 2020	Fabry	0	5	2.7						
	Calbi, 2019	MLD	0	29	135 📥						
	Bernardo, 2020	MPSIH	0	8	6 -						
	Kinsella, 2020	MPSIIIA	0	1	0.8	-					
	Eichler, 2017	X-ALD		17	43.3						
	Aubourg, 2020	X-ALD		4	29	-					
-	Ribeil, 2017	SCD		3	8.9	-			-		
	Walters, 2019	SCD		7	21.3 -		_				
	Walters, 2019	SCD		2	3.1						
	Esrick, 2019		0	5	3.5 -						
	Kanter, 2020		0	17	15.1						
	Cavazzana-Calvo, 2010	ß-thal		2	12.4			_			
	Thompson, 2018	6-thal		18	69.7	-					
	Thompson, 2018		0	4	16.7						
0 40 50 E	0 Lal, 2019	6-thal		11	9.2						
	Colvin, 2020		0	21	22.1		_				
	Scaramuzza, 2020	6-thal	-	9	27						
	1		ō	3	14.4 -			-			
so 4o 5o	60 Adair, 2018 Rio, 2020		õ	9	11 -						
	Czechowicz, 2020		0	2	- 'i L						
	026010/002, 2020	rancom	0	~	'						
	LV 0 (95%CI=0-0.50)		0	279	730.6						
	-		0	210		1.	1	1	1.	1.	
					0	10	zo	30	40	50	6
OVERALL 0.078 (95% CI=0.005-1.1	9) 21 406 1504.2									Ø.	
I ² =87.7%, τ ² =9.17, p _{LRT} <0.001				-		_				Ŕ	Jan .

Genotoxicity of different vectors

Tucci F et al., Nat Commun 2022

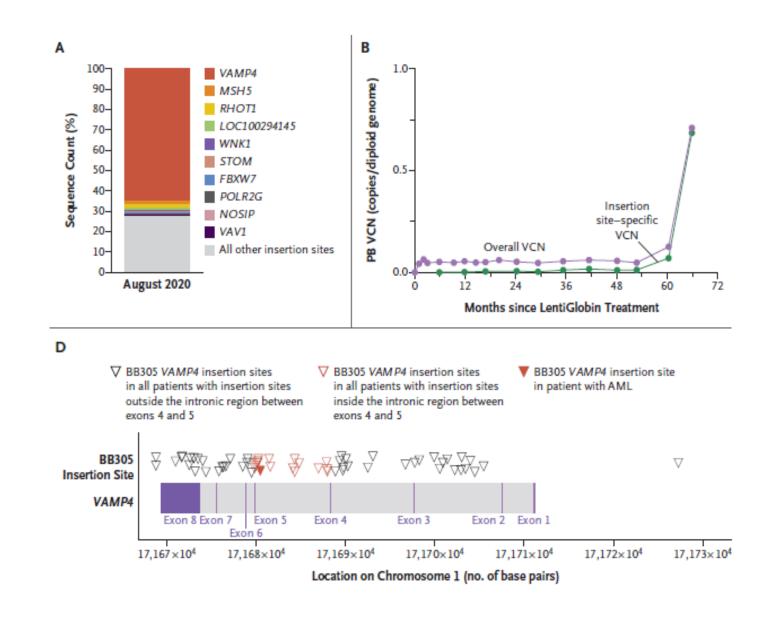
Cases of AML in SCD enrolled in LentiGlobin Program

Patient: Date of Diagnosis:	SCD Pt 1 2018	SCD Pt 2 2021					
Age	45 y/o	25 y/o					
Study/Group	HGB-206/Group A	HGB-206/Group A					
Time from Dosing to Diagnosis	3 years	5.5 years					
Presenting Diagnosis	MDS (progressed to AML)	AML					
Genetics	Monosomy 7; RUNX1, PTPN11	Monosomy 7; RUNX1, PTPN11					
Relevant Findings	No vector in blast cells	Vector detected in blasts close to VAMP-4					
Busulfan AUC (μM x min)	3460	4084					
Reference	Hsieh Mh, et al. Blood Adv 2020	Goyal S, et al. N Engl J Med 2022					

Case 1

	clones	n=195	n=851	n=1030	n≕615	n=666	n=216	n=520
	100 -							
	80 -							
ut 120	60 -							
Sequence count [%]								
uanba	40 -							
05	40							
	20 -							
ne (mon	0 - L	M6	M12	M18	M24	M30	M36 visit 1	M36 visit 2
 ne (mon	110/						TRAIL 1	FIGHL Z.

Table 1. VCN analysis of CD34⁺ and CD34⁻ cells post-MDSdiagnosis and post-AML recurrence

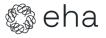

	Post	MDS diagnosis	Post-AML recurrence*
Sample	Purity, %	VCN, c/dg	VCN, c/dg
BM			
Unsorted BM sample	n/a	0.14 ± 0.0	nd
CD34 ⁻ selected	98	0.21 ± 0.03	<loq< td=""></loq<>
CD34 ⁺ selected for myeloblasts	93	0.02 \pm 0.01 (<loq)< td=""><td><loq< td=""></loq<></td></loq)<>	<loq< td=""></loq<>
РВ			
Unsorted PB sample	n/a	0.10 ± 0.0	nd
CD34 ⁻ selected	99	0.07 ± 0.01	<loq< td=""></loq<>
CD34 ⁺ selected for myeloblasts	53	0.08 ± 0.01	<loq< td=""></loq<>

Rank Mo	onth	6	12	18	24	30	36 visit 1	36 visit 2
Top1		DIP2B	BAT2	TMEM217	PHACTR4	USP48	TARBP1	LARS
Top2		MEGF8	CASC3	LIN9	STPG1	CPSF7	UBAP2L	SKAP1
Top3		NUP93	RABEP1	MAP4	RPTOR	RAPGEF6	C15orf38-AP3S2	GK2
Top4		TMEM121	TMEM87A	PTPRA	PBX3	C6orf10	TMEM65	YWHAB
Top5		SSH3	UBE4B	HELZ	TBC1D5	PAAF1	MIR548AG2	LOC100996351
Top6		TULP3	STXBP3	MFSD11	MIR5195	PBX3	TNRC6C	RAB7A
Top7		TBCD	RUNX3	NET1	EYA3	LOC102546299	HCG27	HLA-B
Top8		ZSWIM5	DDX31	XRN2	IP6K1	MAPK1	SUV39H1	C6orf10
Top9		DDX60	OPRT	PHACTR4	VMP1	KANSL1	KMT5B	AXIN1
Top10		SEC14L1	PITPNB	ARID3A	BRCC3	CHD9	ATRX	RPA2
Other mapp.	IS	185	841	 1020	605	656	206	510

Hsieh Mh, et al. Blood Adv 2020

Case 2

Goyal S, et al. N Engl J Med 2022


Cases of AML in SCD enrolled in LentiGlobin Program

Patient: Date of Diagnosis:	SCD Pt 1 2018	SCD Pt 2 2021
Treatment	5-azacytadine + decitabine 7+3 Cladribine + HD-ARAC	3 induction cycles
Allogeneic HSCT	YES PT/Cy haplo (Flu-Mel-TBI)	haplo
Outcome	Relapse 6 months after HSCT	Relapse 3 months after HSCT Died of disease progression

LentiGlobin Program

Cohort characteristics	Group A	Group B	Group C	
	(n=7)	(n=2)	(n=35ª)	
Pre-collection transfusion regimen	Optional	Required	Required	
HSC Source	Bone Marrow	Bone Marrow	Plerixafor-	
			mobilization and	
			apheresis	
Conditioning AUC Target,	4,000	5,000	5,000	
µM*min per dose ^b	(4,747)	(5,136) ^c	(4,829)	
(Median AUC achieved)				
Manufacturing Process	Original	Original/Refined ^d	Refined	
Total Cell Dose,	Low	Medium	Highe	
x10 ⁶ CD34+ cells/kg	(2.1, 1.6)	(2.7 ^c , NA)	(6.9, 5.7)	
(Median total CD34+, CD34 ^{hi} LT-HSPCs)				
Transduction Efficiency	Low	High	High	
(Median DP VCN [c/dg], Median %	(0.7, 27.7)	(3.1°, 77.4°)	(3.7, 80.3)	
Transduced)				

Goyal S, et al. N Engl J Med 2022

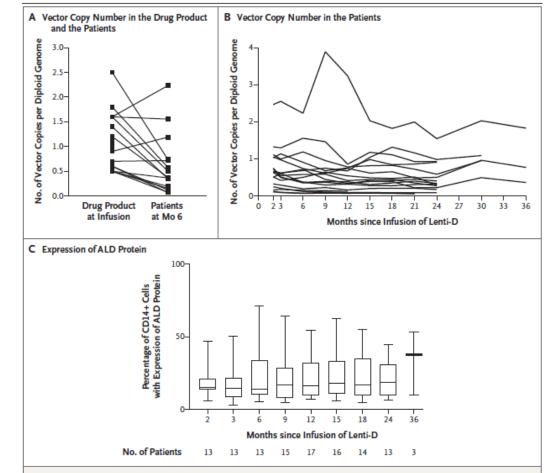
Check for updates

Leukemia after gene therapy for sickle cell disease: insertional mutagenesis, busulfan, both, or neither

Richard J. Jones^{1,*} and Michael R. DeBaun^{2,*}

¹Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University, Baltimore, MD; and ²Vanderbilt-Meharry Sickle Cell Disease Center of Excellence, Vanderbilt University Medical Center, Nashville, TN

- Several lines of evidence suggest an alternative explanation for events in the trial, including that SCD population studies show an increased relative, but a low absolute, risk of AML/ MDS.
- We propose a new hypothesis: after gene therapy for SCD, the stress of switching from homeostatic to regenerative hematopoiesis by transplanted cells drives clonal expansion and leukemogenic transformation of preexisting premalignant clones, eventually resulting in AML/MDS


30 sAML in childhood (including after gene-therapy)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Hematopoietic Stem-Cell Gene Therapy for Cerebral Adrenoleukodystrophy

Florian Eichler, M.D., Christine Duncan, M.D., Patricia L. Musolino, M.D., Ph.D., Paul J. Orchard, M.D., Satiro De Oliveira, M.D., Adrian J. Thrasher, M.D., Myriam Armant, Ph.D., Colleen Dansereau, M.S.N., R.N., Troy C. Lund, M.D., Weston P. Miller, M.D., Gerald V. Raymond, M.D., Raman Sankar, M.D., Ami J. Shah, M.D., Caroline Sevin, M.D., Ph.D., H. Bobby Gaspar, M.D., Paul Gissen, M.D., Hernan Amartino, M.D., Drago Bratkovic, M.D., Nicholas J.C. Smith, M.D., Asif M. Paker, M.D., Esther Shamir, M.P.H., Tara O'Meara, B.S., David Davidson, M.D., Patrick Aubourg, M.D., and David A. Williams, M.D.

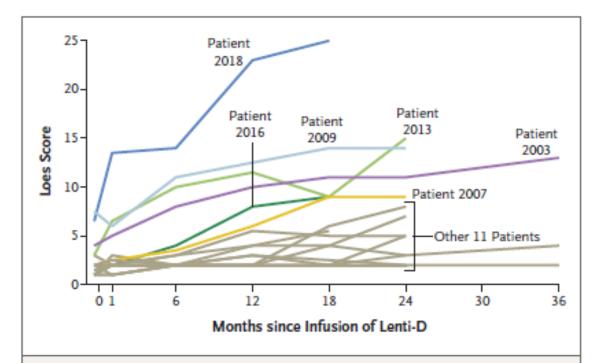


Figure 1. Vector Copy Number and Expression of ALD Protein.

Panel A shows the vector copy number in the Lenti-D drug product at infusion and in the peripheral blood for each of the 17 patients at 6 months after infusion. Panel B shows the vector copy number in the peripheral blood for each of the 17 patients at various time points after infusion. Panel C shows the expression of ALD protein in CD14+ cells in the peripheral blood at various time points after infusion; the horizontal lines in the boxes are median percentages, the top and bottom of the boxes are interquartile ranges, and the I bars are minimum and maximum percentages.

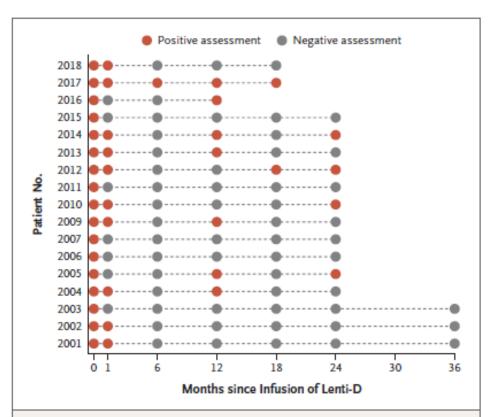
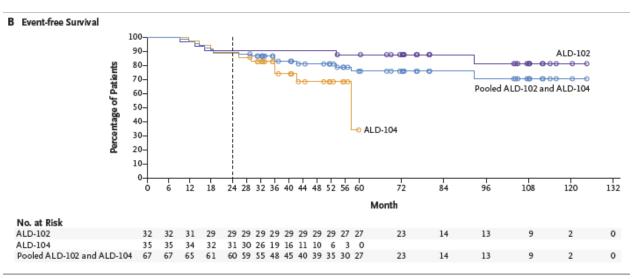
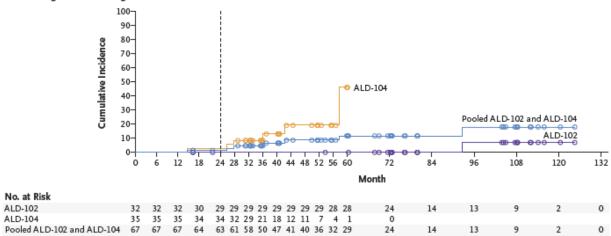
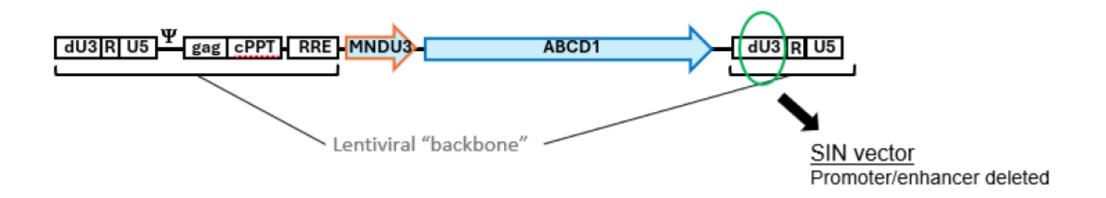


Figure 3. Extent of Lesions on MRI.


Shown are the Loes scores for each of the 17 patients at various time points after the infusion of the Lenti-D drug product. The Loes scores range from 0 to 34, with higher scores indicating an increased extent of lesions on magnetic resonance imaging (MRI). A score of 0.5 or less is considered to be normal.

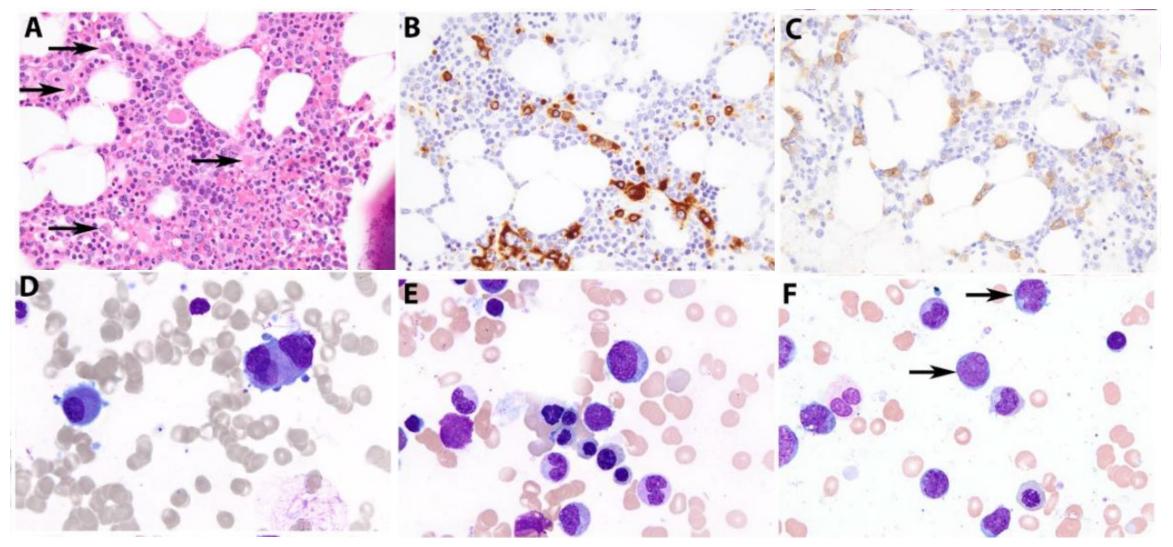

Figure 4. Gadolinium Enhancement on MRI.

Shown are the results of assessments for gadolinium enhancement on MRI for each of the 17 patients at various time points after the infusion of the Lenti-D drug product. Gadolinium enhancement on reemergence after initial resolution was uniformly more diffuse than the enhancement seen at



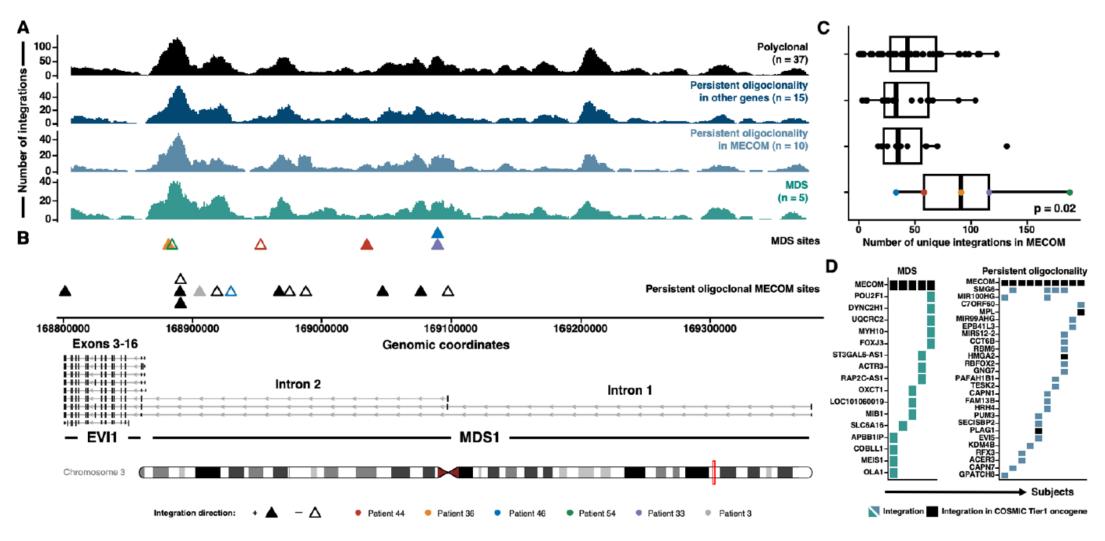
C Hematologic Cancer among Patients Treated with Eli-Cel in ALD-102 and ALD-104

Ψ Packaging symbol; RRE, Rev responsive element; cPPT, central polypurine tract.

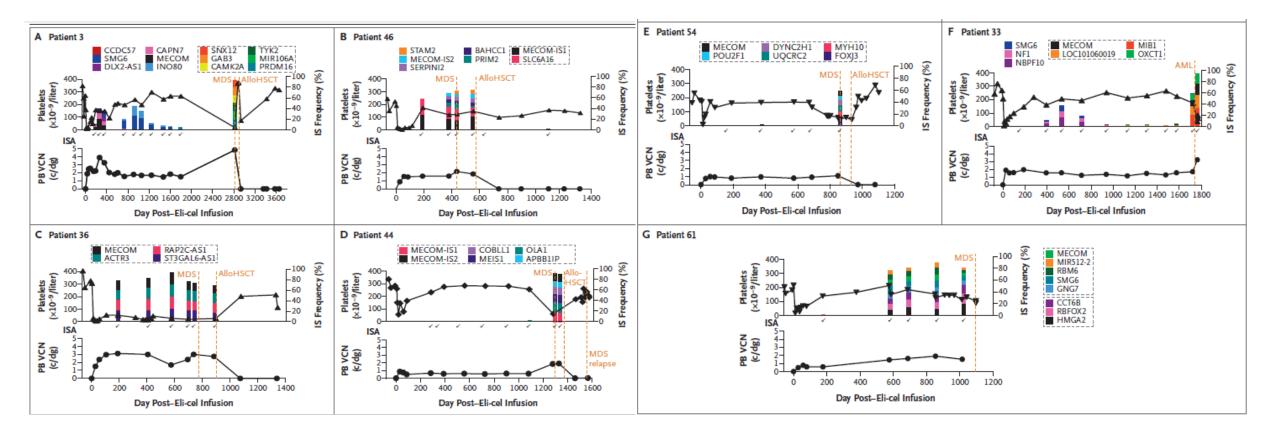


Characteristic	Patient 3	Patient 46	Patient 36	Patient 44	Patient 54	Patient 33	Patient 61	Patients without Hematologic Cance (N = 60)
				Value				Median (range)
Age at eli-cel infusion — yr	5	11	13	10	9	6	7	6 (4-14)
History of blood disease	No	No	No	No	No	No	No	
Baseline blood count†								
Hemoglobin — g/dl	11.7	13.7	12.8	14.9	13.1	12.8	10.2	13.5 (10.5–15.7)
White cells — ×10 ⁻⁹ /liter	6.9	4.7	3.2	7.29	4.8	8	6	6.7 (3.5–15.7)
Platelets — ×10 ⁻⁹ /liter	347	245	405	336	165	243	157	303 (191-492)
Mobilization regimen	G-CSF	G-CSF and plerixafor	G-CSF and plerixafor	G-CSF and plerixafor	G-CSF and plerixafor	G-CSF and plerixafor	G-CSF and plerixafor	
Conditioning regimen	Busulfan- cyclophospha- mide	Busulfan– fludarabine	Busulfan– fludarabine	Busulfan– fludarabine	Busulfan– fludarabine	Busulfan– fludarabine	Busulfan– fludarabine	
Estimated average area under the plasma busulfan concentration–time curve per day — min×µmol/liter	4729	4995	5586	5282	5473	5640	5160	4970 (3478–5695)
VCN in drug product — c/dg	1.6	1.3	1.8	1.2	1.4	3.1	1.1	1.2 (0.5-2.7)
Total cells in drug product — ×10-6/kg of body weight	6	5.7	12.1	15.1	9.6	22.8	7.7	12.0 (5.0–38.2)
Lentiviral vector cells in drug product — %	62	ND	70	45	60	84	41	47 (19–74)
Platelet engraftment — days after drug infu- sion	37	106	104	24	21	34	58	29 (14–108)
Neutrophil engraftment — days after drug infusion	37	14	12	12	15	13	17	13 (11–41)

Table 2. Bone Marrow Findings and Hematologic Cancer Diagnosis and Treatment.*									
Characteristic	Patient 3	Patient 46	Patient 36	Patient 44	Patient 54	Patient 33	Patient 61		
Bone marrow find- ings									
Bone marrow cell morphologic characteristics	Mo 92: Mild hypocellularity (60%) Increased myeloid–ery- throid ratio and left-shifted myeloid maturation Blasts, 15% Trilineage dysplasia present including abundant micro- megakaryocytes	Mo 12: Moderate hypocellu- larity (40–50%); <10% Atypical mega- karyocytes† Blasts, <5% Mo 14 and 18: 15% Hypocellularity with progressive megakaryocytic dysplasia including micromegakaryo- cytes	Mo 26: Normocellularity (80%), with trilineage he- matopoietic maturation Dysplastic mega- karyocytes Blasts, 1%	Mo 42: Mild hypocellularity (50–60%) with dysplastic mega- karyocytes Myeloblasts, 8%, showing abnor- mal coexpres- sion of CD7	Mo 28: Myelodysplasia with 18% blasts	Mo 57: AML with myelomono- cytic features 48–65% blasts Normocellular bone marrow (80–90%)	Mo 36: Diminished cellu- larity Presence of a group of myeloid blast cells (7%), in- cluding a blast cell with an Auer body consistent with myeloid MDS		
Chromosome and karyotype analysis	Normal	Presumed germline aberration at chromo- some 14	Normal	Normal	Monosomy 7, 80%	Normal	NA		
MDS FISH	Normal	Normal	Normal	Normal	NA	Normal	NA		
Targeted deep se- quencing with RHP	Somatic mutations in KRAS c.35G>C (p.G12A) at 14% VAF, and NRAS c.35G>A (p.G12D) at 3% VAF and JAK2 c.2696T>C (p.1899T), VUS at 48% VAF	Germline VUS in CDKN2A c.168C>G (p.S56R) at a VAF of 41%	No somatic muta- tions in the genes screened	Pathogenic WT1 c.1142C>A (p.S381‡) at 39% VAF and a VUS in CDKN2B c.34G>A (p.G12S) at 38% VAF	Mutation in <i>RUNX1</i> c.508+1_508+ 3delGTAinsAG (splice site) at 4%VAF	Somatic mutation in KRAS c.35G>A(p.G12) at 14.6% VAF (206x con- sensus coverage)	Mutation in RUNX1 c.496 C>G (p.R166G) at 8.7% VAF (922x consen- sus frequency)		


Table 2. Bone Marrow	Findings and Hematologi	c Cancer Diagnosis and	Treatment.*				
Characteristic	Patient 3	Patient 46	Patient 36	Patient 44	Patient 54	Patient 33	Patient 61
Age at diagnosis — yr	12	12	15	13	11	11	10
Diagnosis	MDS-EB	MDS-ULD	MDS-ULD	MDS-EB	MDS-EB	AML	MDS
Time of diagnosis — mo since eli-cel infusion	92	14	26	42	28	57	36
Pretransplantation therapy	Cytoreductive therapy	NA	NA	Cytoreductive therapy	Cytoreductive therapy	Cytoreductive therapy and chemotherapy	NA
Transplantation therapy	Myeloablative condi- tioning and allogeneic HSCT	Myeloablative condi- tioning and allogeneic HSCT	Myeloablative conditioning and allogeneic HSCT	Myeloablative con- ditioning and alloge- neic HSCT	Myeloablative condi- tioning and allogeneic HSCT	NA	NA
Donor type	Unrelated mismatch cord donor	Parent haplotrans- plant	Parent haplotrans- plant	Sibling haplotrans- plant	Parent haplotransplant	NA	NA
Relative time of allo-HSCT — mo	95	19	29	45	31	NA	NA
Relative time of post-allogeneic HSCT bone mar- row investigation — mo	96	21	31	52[33	NA	NA
Post-allogeneic HSCT bone mar- row findings	100% donor cells; mor- phologic, immunophe- notypic, and molecular remission	100% donor cells; flow cytometry, FISH, and karyotype, normal; no mutations detected with RHP	100% donor cells; flow cytometry and morphologic analyses, normal	>97% donor cells,∬ trace recipient; mor- phologic analyses, normal; cytogenet- ics, normal; MRD, negative	100% donor cells	NA	NA
Current status	Mo 120: alive, free of MFD, MDS resolved	Mo 43: alive, free of MFD, MDS resolved	Mo 49: died from GVHD	Mo 52: alive, free of MFD, MDS relapsed (MRD, negative at last follow-up)§	Mo 37: alive, MDS re- solved	Mo 61: alive, free of MFD, AML unresolved	Mo 37: alive, MD unresolved

37



Integration: focus on MECOM

Insertion site analysis

Conclusions

- sAML remains an unmet medical need also in pediatric patients, despite continuous optimization of frontline therapies;
- Genetic landscape differs from that of adult cases;
- Genomic screening approaches may be able to identify at risk patients prior to tMN development;
- Although the safety of gene therapy approaches has greatly increased, careful follow-up and continuous monitoring is needed, especially in view of future marketing of new productes.

