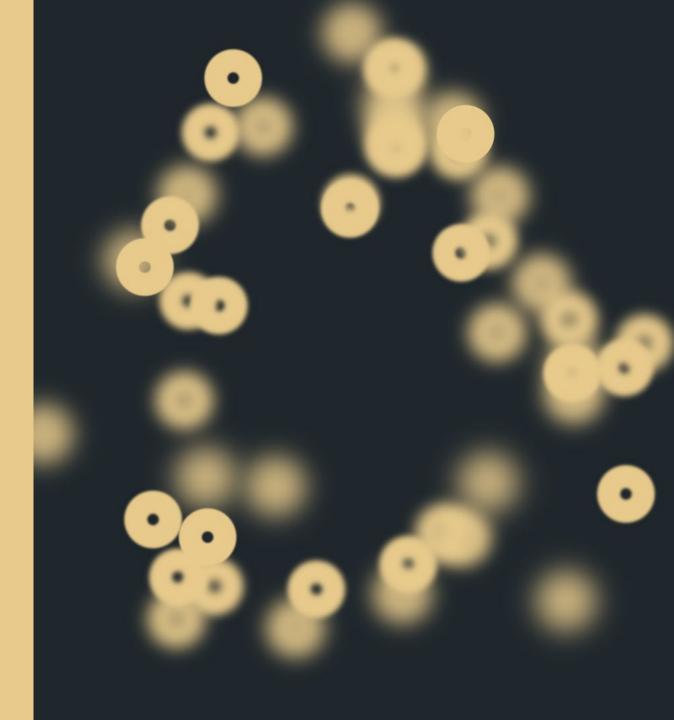


EHA-SWG Scientific Meeting on Recent Advances in the Pathogenesis and Treatment of Secondary Acute Myeloid Leukemias



Berlin, Germany April 25-26, 2025

Treatment of sAML Conventional chemotherapy

Prof. Christian Récher Toulouse University

Disclosure

Consulting or advisory role

Abbvie, Amgen, Astellas, BMS, Boehringer, Daiichi-Sankyo, Jazz Pharmaceuticals, J&J and Servier

Research funding

Abbvie, Amgen, Astellas, BMS, Daiichi-Sankyo, Iqvia and Jazz Pharmaceuticals

Support for attending meetings and/or travel

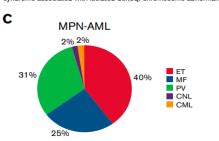
Abbvie, Daiichi-Sankyo, Novartis and Servier

sAML as a synonym for heterogeneity and poor prognosis

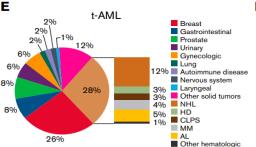
High-risk disease

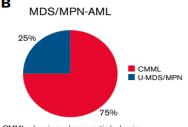
- Poor-risk cytogenetics
- Poor-risk mutations
- Higher expression of MDR phenotype

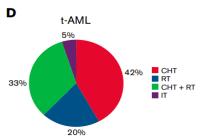
High-risk patient characteristics

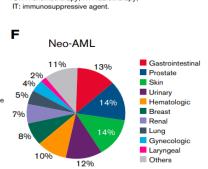

- Altered bone marrow reserves
- Sequelae from previous cytotoxic therapy (heart, lung, GI, immune system)
- Sequelae from previous cancer (surgery, iron overload, thrombosis, depression)

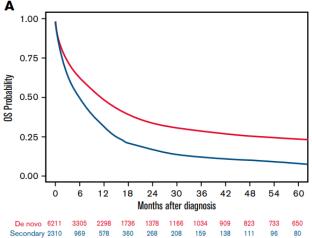
Exclusion from RCT


Scarcity of prospective data (subgroups)


RA: refractory anemia; RARS: refractory anemia with ringed sideroblasts; RCMD: refractory cytopenia with multilineage dysplasia; RCEB: refractory cytopenia with excess blasts; MDS 5q-: myelodysplastic syndrome associated with isolated del(5g) chromosome abnormality.


CML: philadelphia negative chronic myelogenous leukemia; CNL: chronic neutrophilic leukemia; PV: polycytemia vera; MF; chronic idiopathic myelofibrosis; ET: essential thrombocytemia.


NHL: Non-Hodgkin lymphoma; HD: Hodgkin disease; CLPS: Chronic lymphoproliferative syndrome; MM: multiple myeloma; AL: acute leukemia.



CMML: chronic myelomonocytic leukemia; U-MDS/MPN: myelodysplastic/myeloproliferative diseases, unclassificable,

CHT: chemotherapy; RT: radiotherapy; IT: immunosuppressive agent.

Precision diagnostic and timeline of information required for decision making

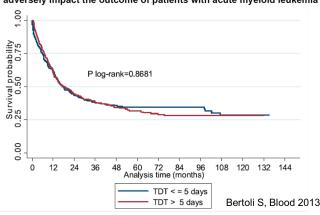
Patient characteristics Age PŠ Comorbidities Sequelae from previous Tx

Previous solid tumor

Cancer type Stage (M-/M+) Nb of Tx lines Latency Cumulative doses of anthracyclines RTx Surgery

Previous lymphoid malignancy

Nb of Tx lines Latency Cumulative doses of anthracyclines RTx **ASCT** Immunotherapy


CART-cells

Lenalidomide

Previous MDS-MDS/MPN-MPN

HMA-sAML Nb of HMA cycles Bone marrow reserve Iron overload **Alloimmunizations** Previous infections Splenomegaly **EMD**

Time from diagnosis to intensive chemotherapy initiation does not adversely impact the outcome of patients with acute myeloid leukemia

Cytoreduction Pretreatment workup Geriatric assessment

PARPi/checkpoint i

Patient's choice

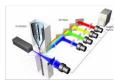
Diagnosis

Disease

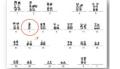
characteristics

d1

d3



Morphology (APL, CBF, NPM1, MR-AML) Flow cytometry (stage of leukemia arrest, MRD)

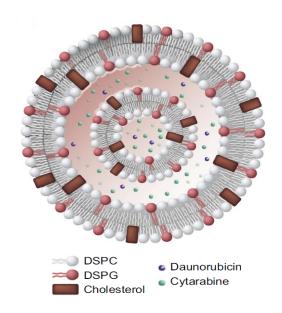

Cytogenetics

PML::RARA, CBFB::MYH11, RUNX1::RUNX1T1, KMT2A::R, BCR::ABL1 Complex/monosomal karyotype

d5

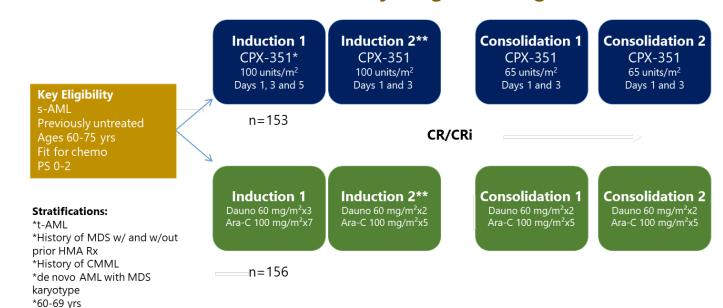
Mutations

Actionable therapeutic targets NPM1 FLT3-ITD, FLT3-TKD IDH1. IDH2 KMT2A::R


NGS

Myeloid gene panel CEBPA, DDX41, TP53. ASXL1. BCOR. EZH2. RUNX1, SF3B1, SRSF2, STAG2. U2AF1. ZRSR2

Intensive chemotherapy remains an option in fit patients with sAML

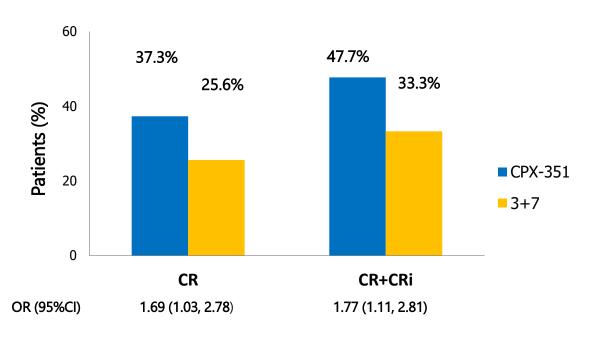

- A few patients remain favorable
 - CBF-AML, AML with NPM1 mutations
- May induce complete remission (> 50%)
- Bridge to transplant as a major goal (look for a donor as soon as Dx is made)
- Recent progress:
 - Induction
 - CPX-351
 - Third cytotoxic drug added to « 7+3 »
 - Intensified purine analogue-based regimen
 - Maintenance
 - Oral azacitidine
 - Transplantation strategies

CPX-351, a new standard for sAML

- Dual-drug liposomal encapsulation of cytarabine and daunorubicin
- Maximally synergistic and minimally antagonistic 5:1 molar ratio of cytarabine to daunorubicin
- Enhanced stability, circulating half-life, and tumor accumulation
- Prolonged drug exposure
- Accumulates in BM with preferential uptake by leukemia cells
- Improved drug therapeutic index by reducing toxicities and/or increasing efficacy.

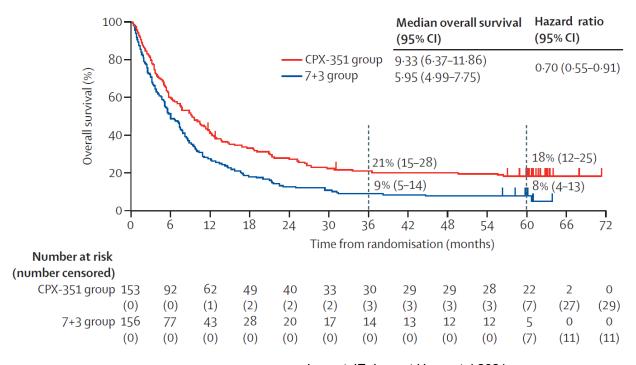
Phase 3 Study of CPX-351 vs Standard Induction in Older Patients with Newly Diagnosed High-Risk AML

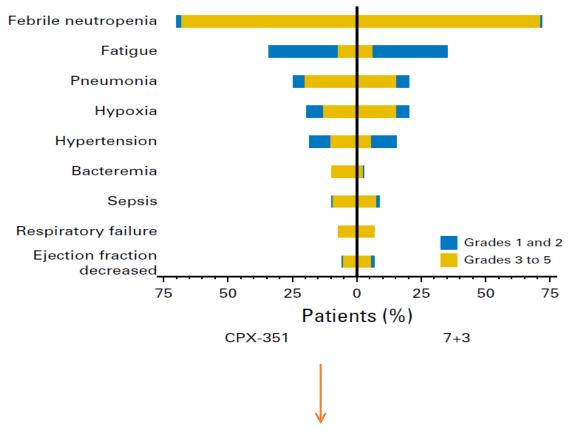
*70-75 yrs


Allogeneic-HCT was performed at the discretion of the treating physician.

^{*1} unit = 1 mg cytarabine + 0.44 mg daunorubicin

^{**} if residual BM blasts at d14

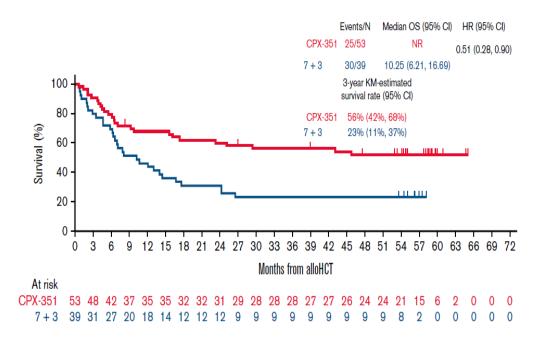

CPX-351 improves response rate and **OS** in **sAML** patients selected for intensive chemotherapy

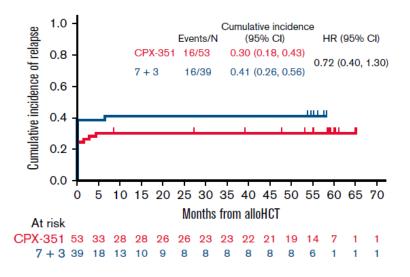

Lancet JE, JCO 2018

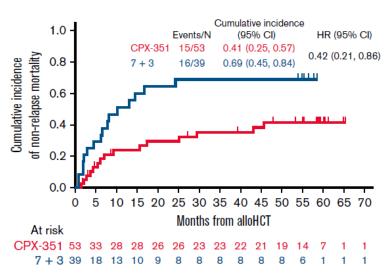
5y-Overall survival

Lancet JE, Lancet Haematol 2021

Safety of CPX-351: a more favorable toxicity profile

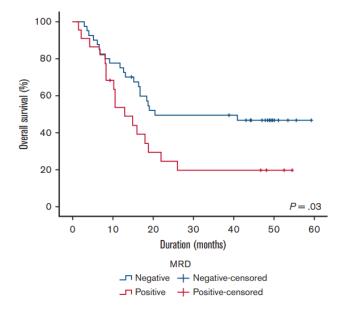

Lower rate of adverse	events p	er patient-year	with CPX-351
	.	J. P. J. L. J.	

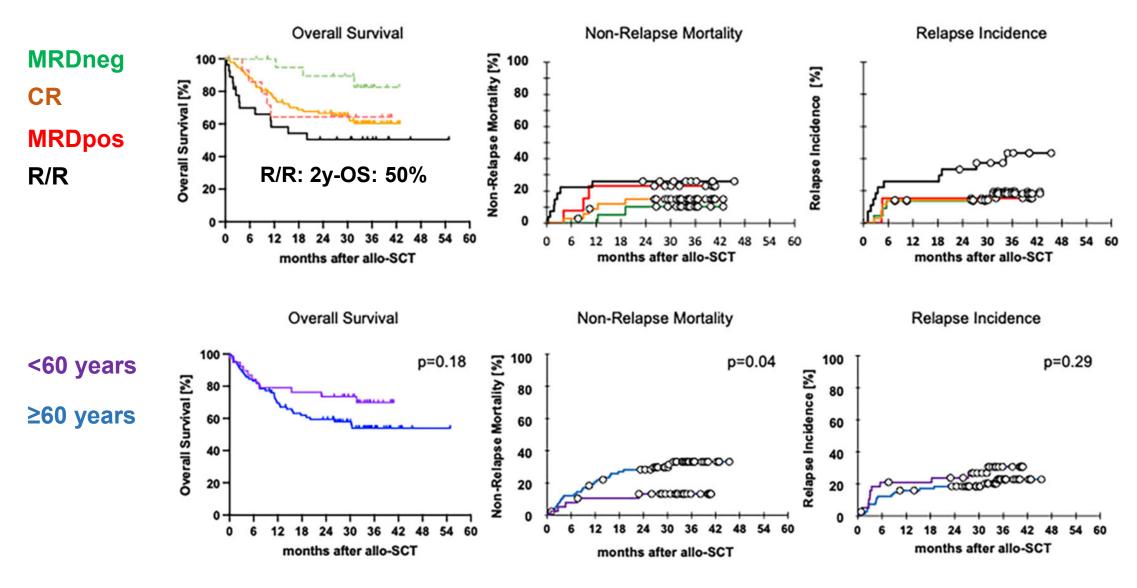

	CPX-351	3+7
ANC> 0.5 Median (days)	35	29
Platelets>50 Median (days)	36.5	29
Day-30 death	5.9%	10.6%
Day-60 death	13.7%	21.2%


Also seen in phase II trials (1L and relapse) Lancet JE Blood 2014; Cortes J, Cancer 2015

Impact of CPX-351 in allografted patients

OS landmarked from the alloHCT date



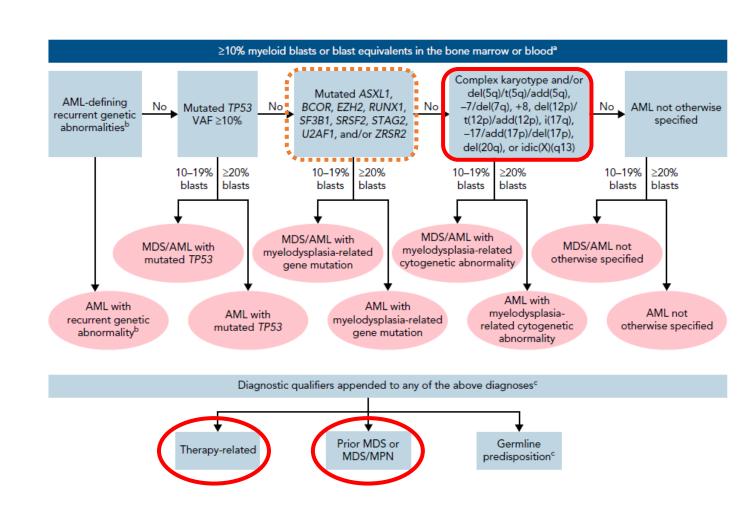

Real-world experience with CPX-351

	RW studies (n=21)	Phase 3 (Lancet JE, JCO 2018)
CR/CRi	44-80%	48%
CR/CRi without MRD (MFC, WT1, NGS)	38-64%	No data
Early deaths Day-30 Day-60	0-14% 1-17%	6% 14%
Allo-HSCT	28-80%	
Median OS (months) HMA-sAML Allo-HSCT	5.2-NR 5.2-7.1 23-NR	9.3 5.7 NR

Prognostic value of negative MRD

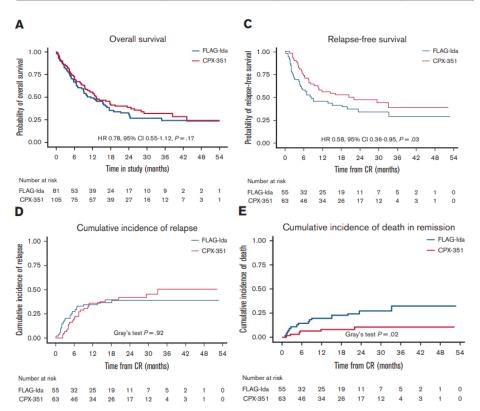
Real-world experience with CPX-351 Post-transplantation outcome

Can we extrapolate CPX-351 results to de novo AML with secondary type mutations?

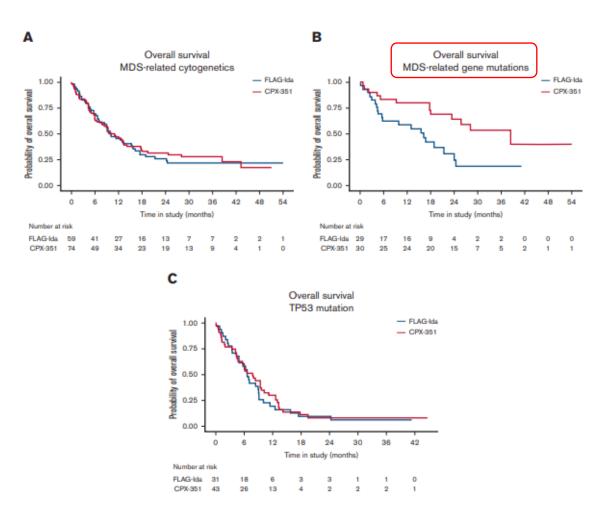

Vyxeos label

Newly diagnosed (ND) therapy-related AML

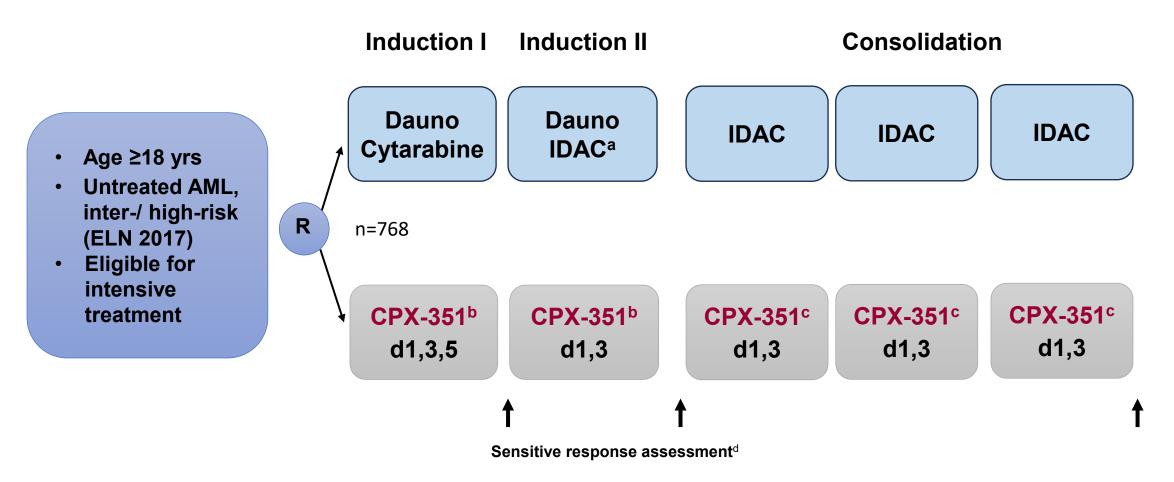
or


ND AML with myelodysplasia related changes (AML-MRC, WHO 2016):

- * Multilineage dysplasia : ≥ 50% dysplastic cells in at least 2 cell lines (unless *NPM1* or *CEBPA*^{dm} mutations)
- * Previous history of MDS or MDS/MPN
- * MDS-related cytogenetic abnormalities (unless del9q)



CPX-351 vs FLAG-Ida in adverse karyotype AML and high-risk MDS (UK NCRI AML19 trial)


	FLAG-IDA	CPX-351	Р
CR/CRi (cycle 1)	65%	51%	.15
CR/CRi (cycle 2)	77%	64%	.06
Early mortality Day 30 Day 60	7% 11%	5% 12%	.46 .77

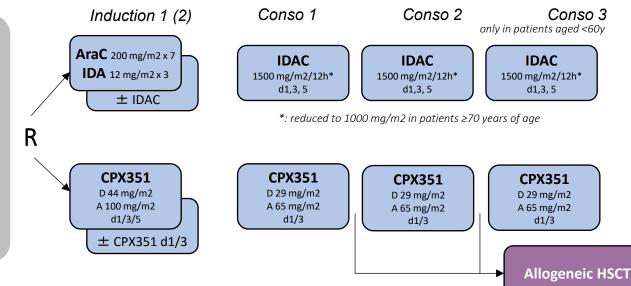
Impact of CPX-351 in MR gene mutations (ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, ZRSR2)

AMLSG 30-18: CPX-351 *vs* "3+7" for patients with intermediate-/high-risk AML (ELN 2017)

Assignment to allogeneic hematopoietic cell transplantation (HCT) according to the local institutional or cooperative group prognostic algorithm; HCT can be performed at any time point following one induction cycle

- ^a IDAC, intermediate-dose cytarabine; age-adapted dosing
- b Patients 18-60 yrs: CPX-351 55/125 mg/m² (125 U/m²); >60 yrs: CPX-351 44/100 mg/m² (100 U/m²)
- ^c CPX-351 29/65 mg/m² (65 U/m²)
- d Assessment by multi-parameter flow cytometry; and next-generation sequencing based analysis.

ALFA-2101 – CPX-351 vs intensive CTx



A randomized Phase 2 study of CPX-351 vs intensive chemotherapy in adults (≥50y) with de novo intermediate-risk AML

Key eligibility criteria

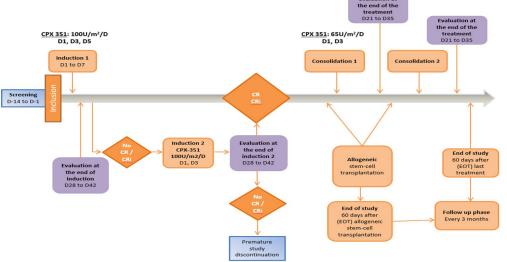
- Age ≥ 50 years
- Newly diagnosed de novo AML
- No MDS-related cytogenetics
- APL and CBF-AML excluded
- FLT3- and/or NPM1-mutated AML excluded
- No CNS involvement
- ECOG-PS ≤2
- · Informed consent

N= 210 patients needed

To demonstrate a 20% increase in the rate of LAIP/DfN MRD <10⁻³ after induction (from 48 to 68%)

On February 17th, 2025: 71 patients included

Challenges:


- Randomization stratified by genomics: secondary AML-like gene mutations, Y/N (9 genes)
- Flow MRD response as primary endpoint

- Primary endpoint: rate of flow LAIP/DfN-based MRD <10⁻³ after the first induction course
- Secondary endpoints: subsequent MRD response, Flow LSC-MRD, NGS-MRD, OS, RFS, safety, QoL
- · Exploratory endpoint:
 - interaction with the sAML-like mutational status
 - interaction with the PgP activity

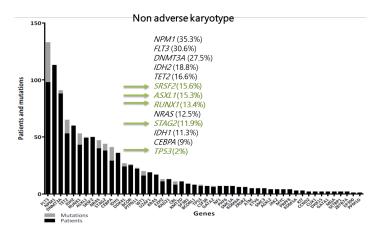
Multicenter phase II non-randomized study assessing CPX-351 in post-MPN AML (FILO)

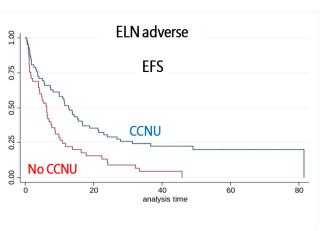
Key eligibility criteria

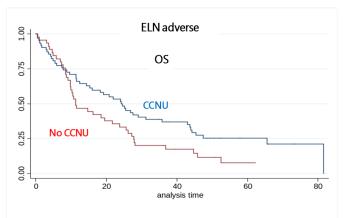
- Age ≥ 18 years
- Newly diagnosed post MPN-AML (ET, PV, PMF or post-ET/PV MF)
- Eligible for intensive chemotherapy

Prematur	60 days at (EOT) allogs stem-ce transplante
study discontinual	tion
filo	FRENCH INNOVATIVE LEUKEMIA ORGANIZATION

	N=41 participants
Age	68 y (45-78)
Prior MPN ET PV PMF Post-ET/PV MF	39% 10% 29% 22%
ECOG PS 0-1 2	80% 20%
ELN 2022 Favorable Intermediate Adverse	2 8 90
Mutations JAK2 TP53 ASXL1 EZH2 TET2 CALR MPL	49% 39% 37% 27% 27% 17% 2%

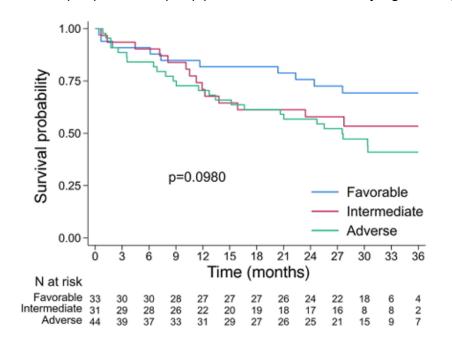

	N=41 participants
CR/CRi	44%
CR/CRi without MRD (MFC)	27%
Day-30 death	12%
Allo-HSCT	10
mOS	6 months (4.5-12)
mEFS	5.5 months (3.3-6.5)


Median follow-up of 11.5 months (range 8.0-13.6)

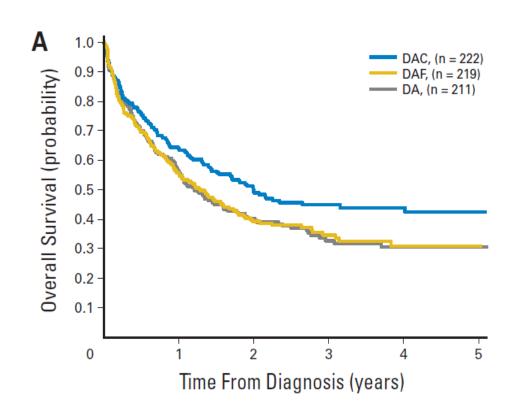

Molecular factors impacting OS *TET2*-mut (OS, 3.6 months vs 8.2, *TET2*-WT) *TP53*-mut (OS, 4.6 months vs 9.7, *TP53*-WT)

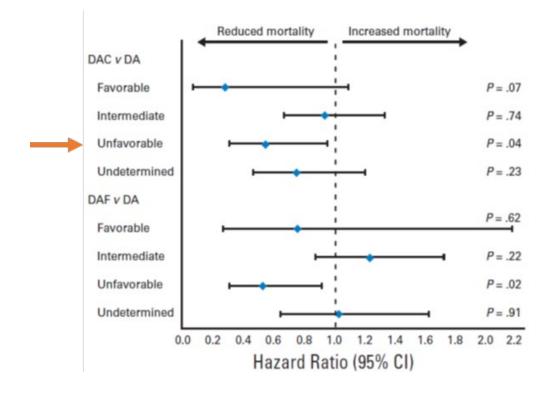
Adding a third drug to 7+3 may improve response rate and outcome Lomustine (CCNU) in older AML (>60y)

LAM-SA 2007 trial: IDA-ARAC-CCNU



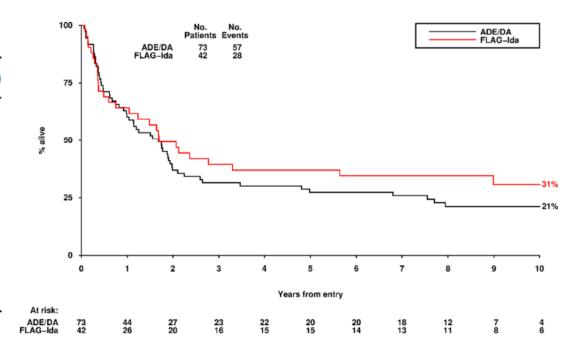
DEXAML-02 trial (>60y) IDA-ARAC-CCNU + DEXAMETHASONE


RUNX1: 23 (21%), ASXL1: 23 (21%), BCOR 6: (5%), EZH2: 5 (5%) SF3B1: 3 (3%), SRSF2: 27 (24%), STAG2: 18 (16%), U2AF1: 7 (6%), ZRSR2: 3 (3%) TP53: 2 (2%) (with intermediate-risk cytogenetics)



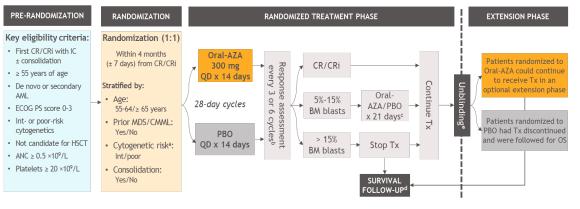
Median OS in adverse AML: 27.5 (9-NR)

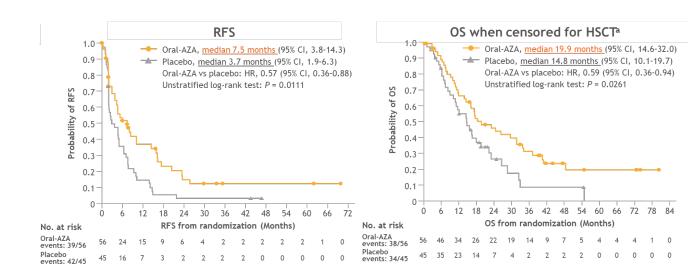
Adding a third drug to 7+3 may improve response rate and outcome Cladribine in younger HR-AML (18-60y)



Intensified purine analogue-based induction may improve response rate and outcome

FLAG-Ida vs DA/ADE
Long-term follow up of the MRC AML15 trial (16-59y)


	FLAG-Ida, %	DA/ADE, %	Unadjusted OR/HR (95% CI)	Stratified OR/HR (95% CI)
CR/CRi	81	79	$0.91 \ (0.35-2.34); P = 0.8$	$0.54 \ (0.19-1.55); P = 0.3$
5-year cumulative incidence of relapse	3	64	0.56 (0.32-1.00); P = 0.05	0.47 (0.24-0.93); P = 0.03
5-year cumulative incidence of death in remission	24	14	1.32 (0.50-3.50); P = 0.6	0.79 (0.26-2.34); P = 0.7
5-year relapse-free survival	41	22	$0.70 \ (0.43-1.15); P = 0.16$	0.54 (0.31-0.96); P = 0.04
2-year survival from relapse	8	19	1.43 (0.71-2.89); P = 0.3	0.67 (0.29-1.55); P = 0.3
5-year overall survival	37	27	0.81 (0.52-1.26); P = 0.4	0.45 (0.33-0.90); P = 0.02
5-year survival censored at SCT	54	39	0.77 (0.45-1.33); P = 0.3	0.49 (0.26-0.90); P = 0.02
Median survival	20.6 months	20.2 months		

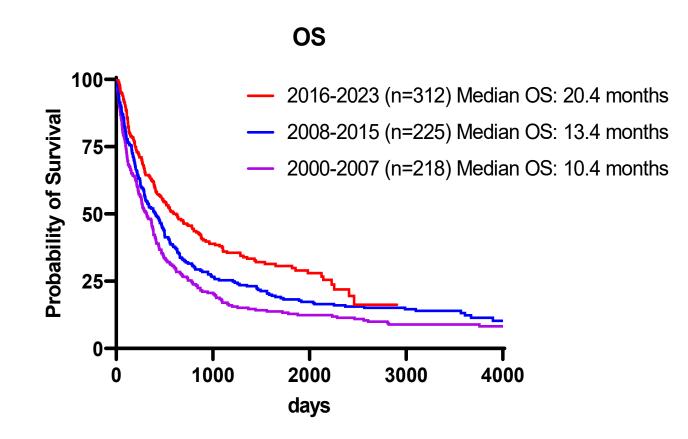

Oral azacitidine maintenance in MRC-AML

Oral-AZA maintenance in AML: QUAZAR AML-001 study design and eligibility criteria (Wei A, NEJM 2020)

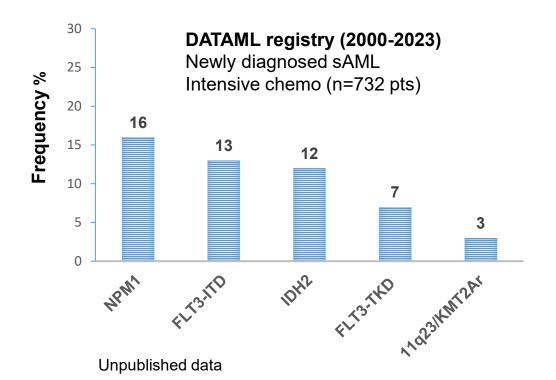
International, multicenter, placebo-controlled, double-blind, randomized, phase 3 trial

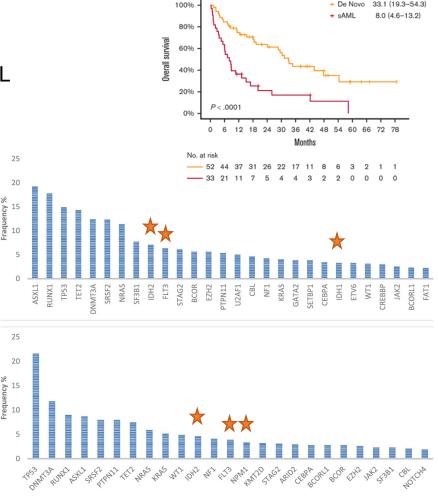
A post-hoc analysis of outcomes of patients with AML with myelodysplasia-related changes who received oral azacitidine maintenance therapy in the QUAZAR AML-001 study

Voso MT, ASCO 2024


Recent progress in sAML

DATAML registry

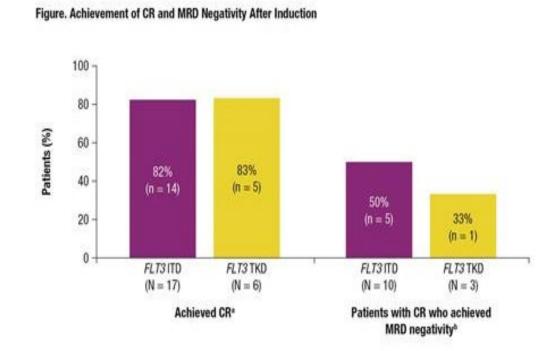

Newly diagnosed s-AML 2000-2023 Intensive chemotherapy N=772 Median age: 63y


	2000-2007	2008-2015	2016-2023
Median age	62y	63y	64y
CR/CRi	62%	68%	79%
Induction deaths	16%	12%	5%
Allo-HSCT	14%	27%	35%
3y-OS	17%	25%	37%

How to improve intensive chemotherapy in sAML?

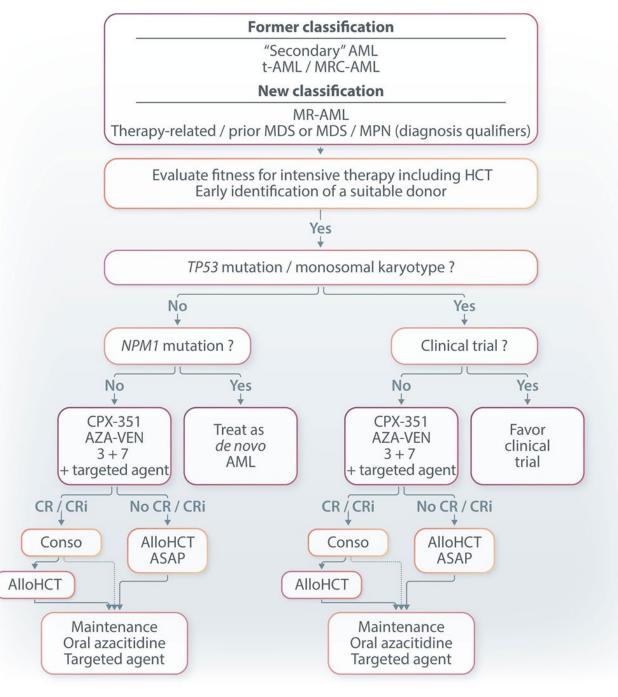
- Adding venetoclax?
 - CAVEAT study (DA, 2+5 + VEN): mOS, 8 months (4.6–13.2) in sAML
 - Chua CC, Blood Adv 2025
- Targeted agents despite lower frequency in sAML?

Incidence of mutations in genes relevant for hematopoiesis and in 1,154 myelodysplasia-related AML (A) patients and in 389 therapy-related AML patients (B). Query on the Genie 15.0 dataset of 7,156 leukemia patients


V-FAST (Vyxeos - First Phase Assessment with Targeted Agents)

- Open-label, multicenter, multi-arm, nonrandomized, phase 1b master trial (NCT04075747) to evaluate the safety and preliminary efficacy of CPX-351 combined with targeted agents (midostaurin, venetoclax, enasidenib).
- CPX-351 (Daunorubicin 44 mg/m2 + cytarabine 100 mg/m2) on Days 1, 3, and 5 + MIDOSTAURIN 50 mg twice daily on Days 8 to 21.

	FLT3 ITD	FLT3 TKD
	(n = 18)	(n = 6)
Age		4604474900449004
Median (range), years	68 (40, 74)	62 (40, 71)
18 to 59 years, n (%)	4 (22)	2 (33)
60 to 75 years, n (%)	14 (78)	4 (67)
Sex, n (%)		
Female	10 (56)	2 (33)
Male	8 (44)	4 (67)
Disease risk classification, n (%)		
Favorable	0	1 (17)
Intermediate	12 (67)	4 (67)
Poor	6 (33)	1 (17)
AML subtype, n (%)		
de novo AML	14 (78)	6 (100)
AML-AHD	3 (17)	0
Therapy-related AML	1 (6)	0
Prior HMA for MDS, n (%)	2(11)	0
ECOG PS, n (%)		
0	4 (22)	3 (50)
1	12 (67)	3 (50)
2	2(11)	0


MID, midostaurin; ITD, internal tandem duplication; TKD, tyrosine kinase domain; AML, acute myeloid leukemia; AML-AHD, acute myeloid leukemia transformed from an antecedent hematologic disorder; HMA, hypomethylating agent; MDS, myelodysplastic syndrome; ECOG PS, Eastern Cooperative Oncology Group performance status.

n = number of patients who received ≥1 dose of study drug and had sufficient data to be included in the analysis.

Future challenge

- Improve response rate to CPX-351 (and CR without MRD before alloHSCT)
- Schedule transplantation as soon as induction decision is made
- Post-alloHSCT intervention
- Improve maintenance in non transplanted patients
- Deal with new comers: post-immune intervention, post-PARPi
- Specific prospective clinical trials

Thank you!

Prof. Christian Récher

recher.christian@iuct-oncopole.fr

