

Novel combinations to target NPM1 mutated acute myeloid leukemia

Daniela Mendoza-Ortiz 26.09.2024

Disclosures

Nothing to disclose

Normal hematopoiesis

• Cancer of the blood and bone marrow (BM)

- Cancer of the blood and bone marrow (BM)
- Most common form of leukemia

Modified from Shi et al. 2024.

- Cancer of the blood and bone marrow (BM)
- Most common form of leukemia
- Treatment options
 - Standard treatment
 - "7 + 3" chemotherapy
 - Hypomethylating agents
 - Targeted treatments \rightarrow Venetoclax
 - BM transplant

- Cancer of the blood and bone marrow (BM)
- Most common form of leukemia
- Treatment options
 - Standard treatment
 - "7 + 3" chemotherapy
 - Hypomethylating agents
 - Targeted treatments \rightarrow Venetoclax
 - BM transplant
- The European Leukemia Net (ELN) 2022
 NPM1 mutation as critical marker for risk stratification and guiding treatment decisions.

Image Source: AML Hub, 2022. Retrieved from <u>AML Hub</u>.

Nucleophosmin 1 (NPM1)

- Nucleus-cytoplasmic shuttling protein
 - Nucleolar localization

Nucleophosmin 1 (NPM1)

- Nucleus-cytoplasmic shuttling protein
 - Nucleolar localization
- Multifunctional protein with critical roles for normal cell proliferation and survival

Modified from Brunetti et al., 2019. Created with BioRender

Nucleophosmin 1 (NPM1)

- Nucleus-cytoplasmic shuttling protein
 - Nucleolar localization
- Multifunctional protein with critical roles for normal cell proliferation and survival
- Dysregulation can contribute to cancer development

Modified from Brunetti et al., 2019. Created with BioRender

• Most common AML genetic alteration

- Most common AML genetic alteration
- Frameshift mutation at the C-terminus domain

Modified from Brunetti et al., 2019.

- Most common AML genetic alteration
- Frameshift mutation at the C-terminus domain
 - Aberrant cytoplasmatic localization

Modified from Brunetti et al., 2019.

- Most common AML genetic alteration
- Frameshift mutation at the C-terminus domain
 - Aberrant cytoplasmic localization
- Associated with increased HOX genes expression

Modified from Brunetti et al., 2019.

- Most common AML genetic alteration
- Frameshift mutation at the C-terminus domain
 - Aberrant cytoplasmatic localization
- Associated with increased HOX genes expression
- Often co-mutated with *FLT3-ITD* and/or *DNMT3A*

- Most common AML genetic alteration
- Frameshift mutation at the C-terminus domain:
 - Aberrant cytoplasmatic localization
- Associated with increased HOX genes expression
- Often co-mutated with FLT3-ITD and/or DNMT3A
- Treatment:
 - Standard therapy \rightarrow High relapse rates
 - The heterogeneity of *NPM1* mut confers different treatment strategies

Ranieri et al., 2020.

Peripheral blood/Bone marrow samples from patients

Peripheral blood/Bone marrow samples from patients

Ex vivo drug assay 72h

seha Sf(PM)

NPM1 mut samples exhibited increased sensitivity to pacritinib

Less sensitive in NPM1 mut samples More sensitive in *NPM1* mut samples Bortezomib Idasanutlin 2.0 Pacritinib^{*} Quizartinib 1.5 **Everolimus** -log10(FDR) Sorafenib Ponatinib 0 Ruxolitinib Azacitidine 0.5 Unpublished data. Do not post 0.0 -3 -6 3 6 \$\$ eha Sf(PM) 7 Mean difference of drug sensitivity scores (DSS)

NPM1 mut samples exhibited increased sensitivity to pacritinib

Less sensitive in NPM1 mut samples

More sensitive in *NPM1* mut samples

7

Pacritinib showed higher efficacy in *NPM1* mut samples than conventional FLT3 inhibitors

The efficacy of pacritinib did not yield any significance among *NPM1* comutated samples.

AML NPM1 mut+FLT3-ITD+DNMT3A mouse cell line is sensitive to pacritinib

Dr. Kasper Rasmussen

AML mouse model with humanized mutations in *NPM1, FLT3* and *DNMT3A*.

Unpublished data. Do not post

Pacritinib + venetoclax synergizes to induce cell death at low concentrations in AML

NPM1 mut+*FLT3-ITD*+*DNMT3A*

Unpublished data. Do not post

Conclusions and future perspectives Pacritinib shows superior activity in NPM1 mut AML

Pacritinib^I shows superior activity in *NPM1* mut AML samples comparted to other FLT3 inhibitors, with efficacy independent of the co-mutations.

- It effectively induces cell death in NPM1 triple mutant (FLT3-ITD + DNMT3A) at a relatively low doses
- The combination of pacritinib with venetoclax enhances its therapeutic effect
- Currently validating the results on *NPM1* mut + *FLT3-ITD*
- Further validation on patients' samples

Acknowledgements

Translational Research and Personalized Medicine group: Dr. Caroline Heckman Dr. Ella Sinervuori Dr. Mahesh Tambe Institute for Molecular Medicine Finland, FIMM. HiLIFE, University of Helsinki, Finland.

UNIVERSITY OF HELSINKI

ICAN Digital Precision Cancer Medicine

Dr. Kasper Rasmussen University of Dundee

Cancer Foundation Finland

🛞 eha Sf(PM)