

The Screening Live Explants (SLiCE) Program:

Accelerating the Drug Development Pipeline

Andrew Satterlee, Assistant Professor The University of North Carolina at Chapel Hill September 27th, 2024

Affiliations and Disclosures

Dr. Andrew Satterlee is an Assistant Professor in a translational institute called **Eshelman Innovation** at the University of North Carolina at Chapel Hill and in the **Division of Pharmacoengineering and Molecular Pharmaceutics** in the Eshelman School of Pharmacy at UNC. He is also the **Director of the Screening Live Cancer Explants Core Facility** at UNC.

Andrew Satterlee is listed as an inventor on Intellectual Property related to this work.

The Problem: The Drug Development Pipeline Lacks the Proper Tools to Design and Prescribe Optimal Treatments

- This was a <u>rare</u>, <u>heterogeneous</u> tumor
- The pathology report suggested chemo- and radiotherapy, but experts in the field *disagreed* on treatment details
- Physicians <u>lacked the proper tools</u> to determine the most effective treatment plan

- These two girls have the <u>same</u> brain tumor type with the <u>same</u> molecular mutation
- Both girls received the same drug
- One tumor has <u>completely disappeared</u>, but the other <u>hasn't shrunk</u> at all

We need a *better way* to determine optimal treatments for *each* person

Cancer Treatment is Progressing Toward Personalized Solutions

Generation 1: Histopathology Treatment guided by physical characteristics such as tumor grade, stage, mitotic rate, or invasion

Generation 2: Molecular Pathology

Treatment guided by mutational status

Generation 3: Functional Pathology Treatment guided by *ex vivo* drug sensitivity of the patient's tumor cells

The SLiCE Platform Maintains Tumors atop Living Tissue Substrates

Tumors Engrafted atop Organotypic Brain Slice Cultures (OBSCs) Recapitulate In Vivo Characteristics

Satterlee et al, Neuro-Oncology, 2019

The SLiCE Platform Uniquely Maintains Uncultured Patient Brain Tumor Tissues on **OBSCs**

Breanna Mann, PhD

Mann et al, Cell Reports Medicine, 2023

The Screening Live Cancer Explants (SLiCE) Program at UNC: Accelerating the Drug Development Pipeline 7

The SLiCE Platform Uniquely Maintains Uncultured Patient **Ovarian** Tumor Tissues on Organotypic Mesenteric Membrane Cultures (**OMMCs**)

Valdivia et al, BioRxiv, 2024

Our Standardized, Normalized Process to *Functionally* Measure Tumor Response to Treatment

- LTSs allow drug screening of cell lines and uncultured patient tumor tissue in just **four days**
- Tumor cryopreservation protocol allows longterm storage of several representative aliquots, as well as shipment across sites
- The SLiCE Assay contains robust **standardization** and **quality control** measures
- Our drug sensitivity score normalizes tumor kill to **off-target toxicity** for each drug
- Our A.I.-driven **automated** image analysis and dose-response model fitting program saves time
- This workflow allows association of results on OBSCs to patient outcomes

Mann et al, Cell Reports Medicine, 2023

9 The Screening Live Cancer Explants (SLiCE) Program at UNC: Accelerating the Drug Development Pipeline

Our Standardized, Normalized Process to *Functionally* Measure a Patient Tumor's Response to Treatment

Types of Analysis:

•

- "Across the panel of preclinical therapeutics you provided, Isoform #3 performed better than all others"
 - "Your therapeutic was more effective than Standard of Care in 90% of Adult **High-Grade Gliomas**"
- "Patient X was a responder to Drug Y and thus should be enrolled on the trial"
- "Your metastatic tumor was less sensitive to Drug Z than any other tumor we profiled"

Case Study of a Pediatric Glioblastoma

PGBM and PGBM-R DSS for each tested therapy relative to other tumors: TMZ and Xrad Scored Poorly

Patient's mutational profile is complex but suggests sensitivity to TMZ + XRad

Tumor Name	Primary pathology diagnosis	Age	Mutations	Treatment
PGBM	GBM	Pediatric	IDH1/2 IDH1 c.395G>A mutation detected, TERT-, methylated MGMT, GFAP+, OLIG2+, IDH1132H+, H3K27M-, patchy expression of BRAF V600E, MS- Stable, IDH1 = R132H, PIK3CA = H1047R, CDK4 amplification, PAX5 = V129M, TP53 = R273C	Xrad, Veliparib, TMZ
PGBM-R	GBM (Recurrent tumor from same patient as PGBM)	Pediatric	MS-stable, CDK4 amplification, IDH1 R132H, PAX5 V129M, PIK3CA H1047R, TP53 R273C	TMZ; then moved onto a trial

Patient had rapid tumor recurrence and a second surgery six months after the first surgery

Collaborate with us!

- We're building the SLiCE Platform as a tool to help:
 - Academic labs and companies with therapeutic compounds in preclinical development
 - Pharma and biotech companies with therapeutics in clinical trials
 - Patients and physicians who need personalized treatment guidance
- We've opened a **Core Facility within UNC** to make collaborating as easy as possible, helping other groups test their own therapeutics on uncultured, living tumor tissue resected from patients at UNC Hospitals

Check out our Core Facility!

