

EHA-GBMTA-AHA
Hematology Tutorial:
New aspects in diagnostic
choices and treatment
options of hematological
malignancies

Session 6: CLL Self assessment case 1

Gianluca Gaidano, M.D., Ph.D.

Division of Hematology

Department of Translational Medicine

Università del Piemonte Orientale

Novara, Italy

Disclosures

Scientific Advisory Board: AbbVie, AstraZeneca, BeiGene, Incyte, Johnsson & Johnsson, Eli-Lilly

Speakers Bureau: Abbvie, AstraZeneca, BeiGene, Hikma, Incyte, Johnsson & Johnsson

Clinical history: diagnosis

✓ Male, 66-years-old at diagnosis

✓ Hypertension, hypothyroidism, right carotid artery stenosis

✓ Oral daily therapy: ramipril, levothyroxine, cardioaspirin

✓ The last routine blood tests prescribed by his general practitioner show lymphocytosis. He is referred to the Hematology division of his town.

Laboratory tests and physical examination

Parameters	Values	Reference values	Physical examination: no B symptoms, small
WBC	19.1 x10 ⁹ /l	4.0-10.0 x10 ⁹ /l	lymphadenopathies, no hepatosplenomegaly
ALC	14.3 x10 ⁹ /l	1.0-4.5 x10 ⁹ /l	
Hb	151 g/l	135-175 g/l	Cervical
PLT	301 x10 ⁹ /l	150-450 x10 ⁹ /l	1.5 cm
Total bilirubin	11 ∝mol/l	3-22 ∞mol/l	
LDH	320 IU/I	208-450 IU/I	
lgG	10.61 g/l	6-16 g/l	Spleen on costal
lgA		matic CL	mardin
IgM A	sympto	matic CL	L, stage Rai I, Binet A
B2M	1.8 mg/l	0-2.3 mg/l	
HCV serology	Negative		
HCV serology HIV serology	Negative Negative		Inguinal
	_		Inguinal 1.5 cm
HIV serology	Negative		

with low expression of surface Ig

Which other tests could be performed to complete the diagnostic assessment in this patient?

- 1. CT scan
- 2. Abdominal Ultrasound and chest radiography
- 3. TP53 and IGHV mutational status
- 4. Marrow aspiration and biopsy
- 5. All previous options are correct

Which other tests could be performed to complete the diagnostic assessment in this patient?

- 1. CT scan
- 2. Abdominal Ultrasound and chest radiography
- 3. TP53 and IGHV mutational status
- 4. Marrow aspiration and biopsy
- 5. All previous options are correct

Which should be the management of this CLL Rai I, Binet A patient?

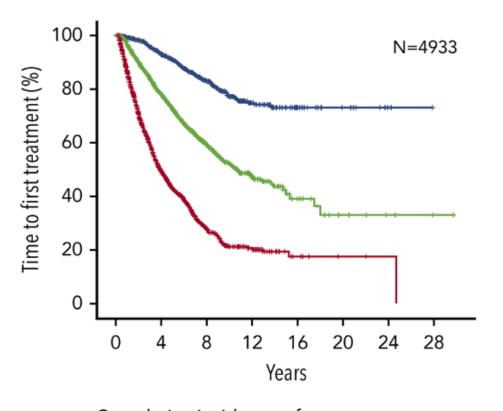
- 1. Treat the patient with BTKi immediately
- 2. Watch and wait strategy
- 3. Start chemoimmunotherapy with within the next 2 months
- 4. Discharge the patient
- 5. All the previous options are incorrect

Which should be the management of this CLL Rai I, Binet A patient?

- 1. Treat the patient with BTKi immediately
- 2. Watch and wait strategy
- 3. Start chemoimmunotherapy with within the next 2 months
- 4. Discharge the patient
- 5. All the previous options are incorrect

iwCLL guidelines

	General practice
Treat with Rai stage 0	NGI*
Treat with Binet stage A	NGI*
Treat with Binet stage B or Rai stage I or II	Possible*
Treat with Binet stage C or Rai stage III or IV†	Yes
Treatment of active/progressive disease	Yes
Treat without active/progressive disease	No


Abbreviations: NGI, not generally indicated

IPS-E: a prognostic tool for the assessment of risk of progression in early stage CLL

Variable	Points
IGHV unmutated	1
Lymphocytes >15x10 ⁹ /L	. 1
Nodal involvement	1

Risk group	Score
Low risk	0
Intermediate risk	1
High risk	2-3

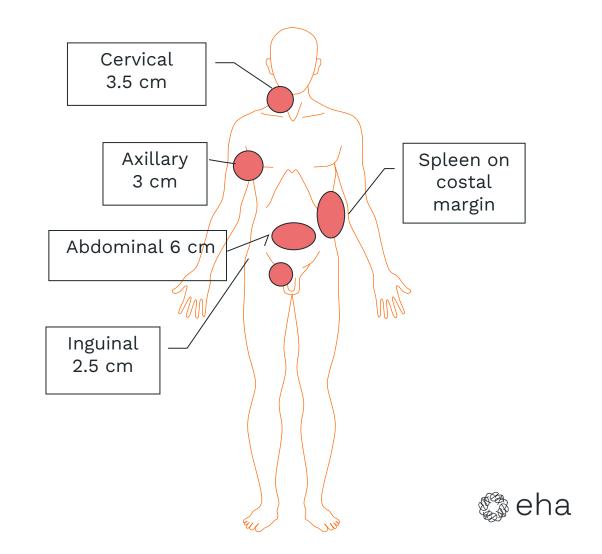
Cumulative incidence	e of treatme	ent	
	1 year	5 years	_
Low risk	<1%	8%	
Intermediate risk	3%	28%	
High risk	14%	61%	

The IPS-E is a simple and robust prognostic model that predicts the likelihood of treatment requirement in patients with early-stage CLL and can be used in clinical management and in the design of clinical trials

Clinical history: progression after watch and wait

Asymptomatic CLL, stage Rai I, Binet A

Watchful waiting


5 years later: progressive lymphadenopathies and lymphocytosis, anemia, thrombocytopenia, high LDH, fatigue and weight loss developed

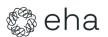
Laboratory tests and physical examination

Parameters	Values	Reference values
WBC	60.5 x10 ⁹ /l	4.0-10.0 x10 ⁹ /l
ALC	55.4 x10 ⁹ /l	1.0-4.5 x10 ⁹ /l
Hb	104 g/l	135-175 g/l
PLT	69 x10 ⁹ /l	150-450 x10 ⁹ /l
Total bilirubin	10 ∞mol/l	3-22 ∞mol/l
LDH	651 IU/I	208-450 IU/I
lgG	7.42 g/l	6-16 g/l
IgA	1.2 g/l	0.9-4.5 g/l
lgM	0.8 g/l	0.5-2 g/l
B2M	3.8 mg/l	0-2.3 mg/l
HCV serology	Negative	
HIV serology	Negative	
HBsAg	Negative	
HBcAb/HBsAb	Negative	
DAT/IAT (Coombs)	Negative	

Physical examination and US of the abdomen

Considering lab tests and physical examination, which other tests is useful to perform?

- 1. Only CT scan to exclude Richter Syndrome
- 2. Only TP53 and IGHV mutational status
- 3. CT scan and TP53 and IGHV mutational status
- 4. CT/PET scan and TP53 and IGHV mutational status
- 5. No further tests are required: immediate treatment with BTKi


Considering lab tests and physical examination, which other tests is useful to perform?

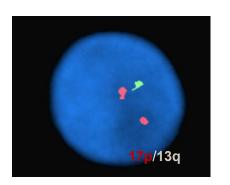
- 1. Only CT scan to exclude Richter Syndrome
- 2. Only TP53 and IGHV mutational status
- 3. CT scan and TP53 and IGHV mutational status
- 4. CT/PET scan and TP53 and IGHV mutational status
- 5. No further tests are required: immediate treatment with BTKi

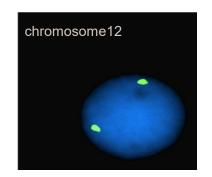
How would you analyse TP53 status in this patient?

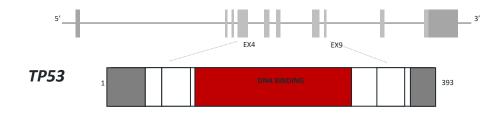
- 1. by flow cytometry
- 2. by DNA sequencing only
- 3. by FISH only
- 4. by FISH and DNA sequencing
- 5. by immunistochemistry on the bone marrow biopsy

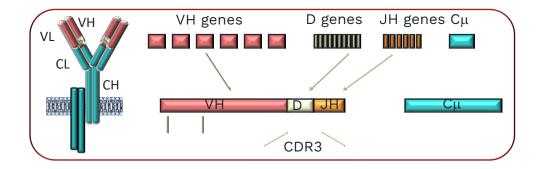
How would you analyse TP53 status in this patient?

- 1. by flow cytometry
- 2. by DNA sequencing only
- 3. by FISH only
- 4. by FISH and DNA sequencing
- 5. by immunistochemistry on the bone marrow biopsy

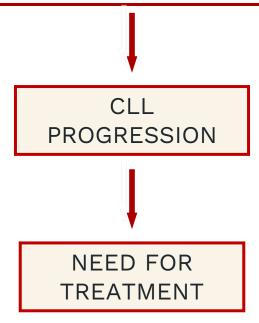



Biological parameters


✓ Fluorescence in situhybridisation (FISH):✓ 13q deletion


✓ TP53 mutational status:✓ Mutated

✓ Unmutated IGHV 4-34*01

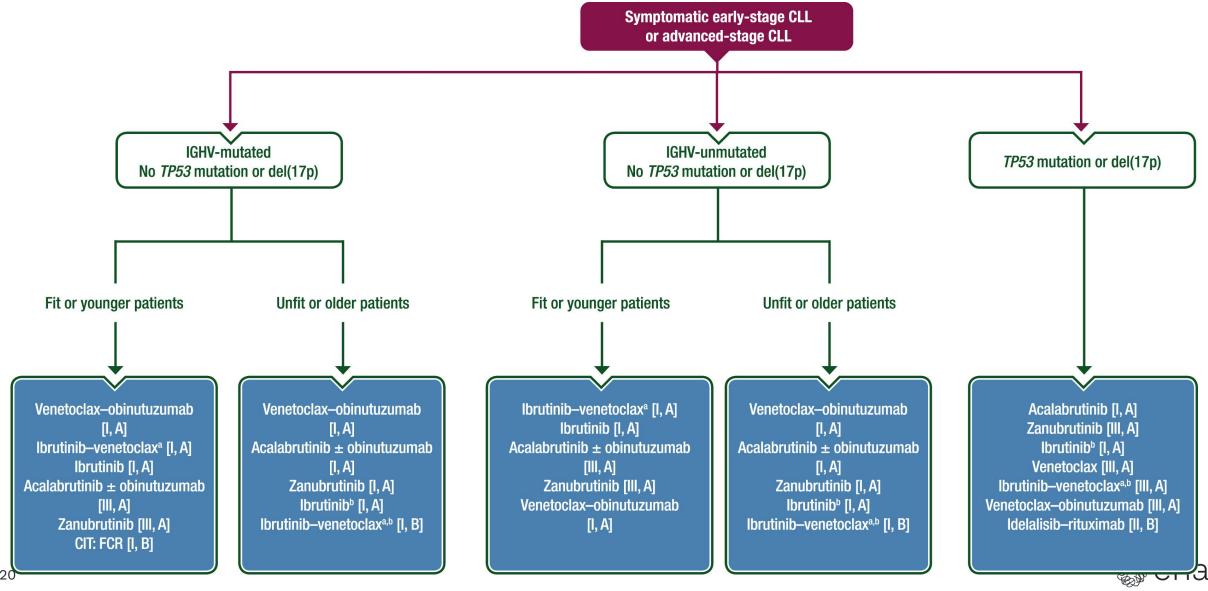


Clinical history: indication for treatment

- 72-years-old CLL patient, Rai IV, Binet C, symptomatic for fatigue, weight loss, progressive lymphadenopathies and thrombocytopenia
- IGHV unmutated, TP53 mutated
- SUVmax at PET/CT scan 3.4

Which treatment option for this patient?

- 1. Continue watch and wait
- 2. Obinutuzumab-Venetoclax (Fixed Duration)
- 3. Ibrutinib Venetoclax (Fixed Duration)
- 4. Obinutuzumab-Chlorambucil
- 5. BTK inhibitor (continuous treatment)



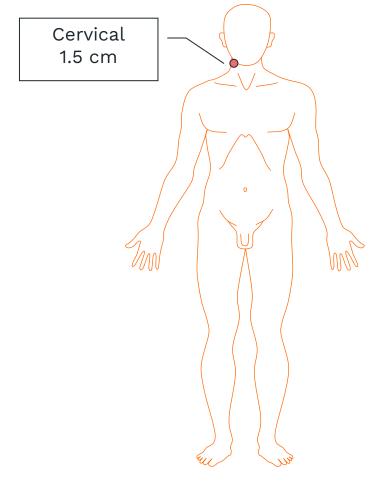
Which treatment option for this patient?

- 1. Continue watch and wait
- 2. Obinutuzumab-Venetoclax (Fixed Duration)
- 3. Ibrutinib Venetoclax (Fixed Duration)
- 4. Obinutuzumab-Chlorambucil
- 5. BTK inhibitor (continuous treatment)

ESMO guidelines for first-line treatment

Clinical history: treatment choice

- 72-year old CLL patient, Rai IV, Binet C, symptomatic for fatigue, weight loss, progressive lymphadenopathies and thrombocytopenia
- •
- IGHV unmutated, TP53 mutated
- SUVmax at PET/CT scan 3.4


Acalabrutinib 100 mg BID

Laboratory tests and physical examination after 6 months of acalabrutinib

Parameters	Values	Reference values
WBC	8.5 x10 ⁹ /l	4.0-10.0 x10 ⁹ /l
ALC	4.4 x10 ⁹ /l	1.0-4.5 x10 ⁹ /l
Hb	134 g/l	135-175 g/l
PLT	150 x10 ⁹ /l	150-450 x10 ⁹ /l
Total bilirubin	10 ∝mol/l	3-22 ∞mol/l
LDH	230 IU/I	208-450 IU/I
lgG	7.42 g/l	6-16 g/l
IgA	1.2 g/l	0.9-4.5 g/l
lgM	0.8 g/l	0.5-2 g/l
B2M	3.8 mg/l	0-2.3 mg/l
HCV serology	Negative	
HIV serology	Negative	
HBsAg	Negative	
HBcAb/HBsAb	Negative	
DAT/IAT (Coombs)	Negative	

Physical examination and ultrasound of the abdomen

Partial response was obtained

After 12 months of acalabrutinib

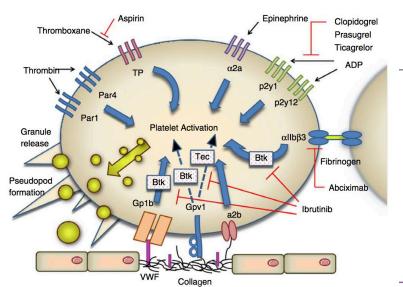
- 72-year old CLL patient, Rai IV, Binet C, symptomatic for fatigue, weight loss, progressive lymphadenopathies and thrombocytopenia
- •
- IGHV unmutated, TP53 mutated
- SUVmax at PET/CT scan 3.4

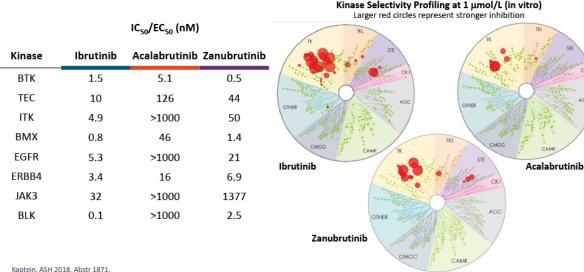
Acalabrutinib 100 mg BID

12 months later: gingival bleeding and petechiae (grade 3)

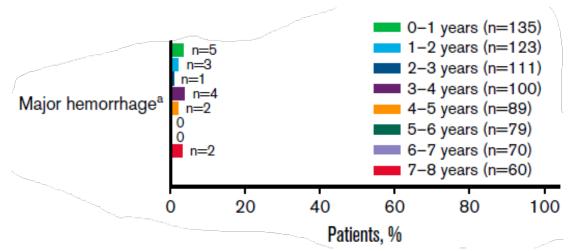
Which is your option in this case?

- 1. Stop Acalabrutinib and switch to Obinutuzumab-Venetoclax
- 2. Consider acalabrutinib temporary interruption and dose reduction
- 3. Switch to Obinutuzumab-Chlorambucil
- 4. Switch to Zanubrutinib
- 5. Other options




Which is your option in this case?

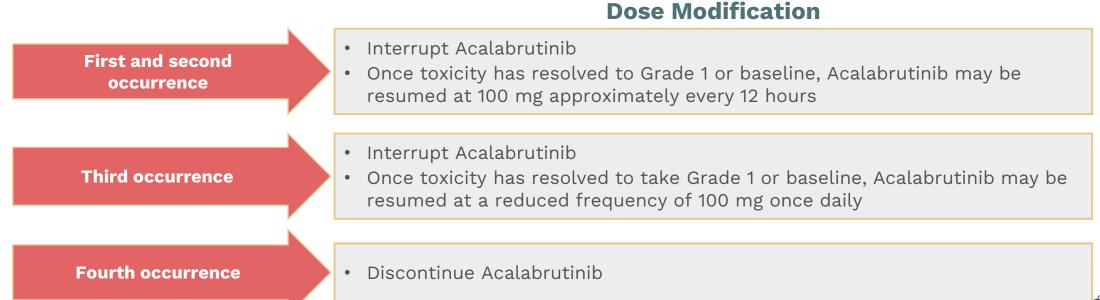
- 1. Stop Acalabrutinib and switch to Obinutuzumab-Venetoclax
- 2. Consider acalabrutinib temporary interruption and dose reduction
- 3. Switch to Obinutuzumab-Chlorambucil
- 4. Switch to Zanubrutinib
- 5. Other options



BTKi and bleeding

The increased risk of bleeding is related to the role of BTK and TEC kinases in platelet activation downstream of the collagen receptor glycoprotein VI

Major hemorrhage episodes are uncommon in patients under BTKi. 2nd generation BTKi causes less bleeding. **Vast majority of bleeding events represent minor grade AEs**


Concurrent medication with a single direct oral anticoagulant or antiplatelet agent does not represent a contraindication for acalabrutinib administration

Acalabrutinib: Recommended Dose Adjustments for Adverse Reactions

Dose modifications are specified for occurrence of the following Grade ≥3 adverse events

- Grade 3 thrombocytopenia with bleeding, Grade 4 thrombocytopenia
- Grade 4 neutropenia lasting longer than 7 days
- Grade 3 or greater non-haematological toxicities

Discussion points

- ✓ CLL staging according to iwCLL guidelines is based on history, physical examination, and CBC
- ✓ Chest X-ray and abdominal US at diagnosis are optional, though used in many centers
- ✓ Trials anticipating treatment have shown no overall survival benefit
- ✓ Second generation BTK inhibitors should be preferred over ibrutinib for continuous treatment
- ✓ Access (availability + affordability) to novel medicines may prevent full implementation of ESMO guidelines in specific geographic contexts

Take home messages

- ✓ Indications for starting CLL treatment should be according to iwCLL guidelines
- ✓ Biomarkers (IGHV, *TP53*) represent decisional nodes for choosing first line treatment
- ✓ Chemoimmunotherapy has no longer a role in CLL provided that access to pathway inhibitors is fully granted

References

- Condoluci A, Terzi di Bergamo L, Langerbeins P, et al. International prognostic score for asymptomatic earlystage chronic lymphocytic leukemia. Blood. 2020;135:1859-1869
- Eichhorst B, Ghia P, Niemann CU, et al. Clinical Practice Guideline interim update on new targeted therapies in the first line and at relapse of chronic lymphocytic leukaemia. Ann Oncol. 2024;35:762-768
- Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018 Jun 21;131(25):2745-2760
- Jiang D, Song Z, Hu Y, Dong F, Zhao R. Risk of bleeding associated with BTK inhibitor monotherapy: a systematic review and meta-analysis of randomized controlled trials. Expert Rev Clin Pharmacol. 2022;15:987-996
- Moia R, Gaidano G. Prognostication in chronic lymphocytic leukemia. Semin Hematol 2024;61:83-90
- Mouhssine S, Maher N, Kogila S, et al. Current Therapeutic Sequencing in Chronic Lymphocytic Leukemia. Hematol Rep. 2024;16:270-282
- Nawaratne V, Sondhi AK, Abdel-Wahab O, Taylor J. New Means and Challenges in the Targeting of BTK. Clin Cancer Res. 2024;30:2333-2341.
- Patton JT, Woyach JA. Targeting the B cell receptor signaling pathway in chronic lymphocytic leukemia. Semin

 10 Hematol. 2024;61:100-108

EHA-GBMTA-AHA
Hematology Tutorial:
New aspects in diagnostic
choices and treatment
options of hematological
malignancies

Session 6: CLL Self assessment case 2

Gianluca Gaidano, M.D., Ph.D.

Division of Hematology

Department of Translational Medicine

Università del Piemonte Orientale

Novara, Italy

Disclosures

Scientific Advisory Board: AbbVie, AstraZeneca, BeiGene, Incyte, Johnsson & Johnsson, Eli-Lilly

Speakers Bureau: Abbvie, AstraZeneca, BeiGene, Hikma, Incyte, Johnsson & Johnsson

Clinical history

✓ Male, 45-years-old

✓ Asymtomatic. Unremarkable medical history

✓ He was a blood donor till the identification of lymphocytosis before one blood donation. He was referred to our institution for further work up. Flow cytometry identified 7 x 10⁹/l monoclonal CD19+, CD5+, CD23+ lymphocytes

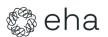
✓ Diagnosis of CLL (Rai 0/Binet A) in 2007

Clinical history: 3 years later

Asymptomatic CLL, stage Rai O/Binet A

3 years later: lymphadenopathy, splenomegaly, hepatomegaly, night sweats, fatigue, weight loss

Laboratory tests and physical examination


Laboratory tests

Clinical examination: lymphadenopathy, hepatosplenomegaly

Parameters	Values	Reference values
WBC	94.8 x10 ⁹ /l	4.0-10.0 x10 ⁹ /l
ALC	88.8 x10 ⁹ /l	1.0-4.5 x10 ⁹ /l
Hb	120 g/l	135-175 g/l
PLT	115 x10 ⁹ /l	150-450 x10 ⁹ /l
Total bilirubin	12 μmol/l	3-22 μmol/l
LDH	600 IU/I	stage F
IgG	10.6 g/l	stage i
IgA	0.5 g/l	0.9-4.5 g/l
IgM	0.2 g/l	0.5-2 g/l
B2M	3.2 mg/l	0-2.3 mg/l
HCV serology	negative	
HIV serology	negative	
HBsAg	negative	
HBcAb/HBsAb	Negative	
DAT/IAT (Coombs)	negative	

Which condition would you consider in your diagnostic reasoning at this time?

- 1. CLL progression
- 2. Richter transformation
- 3. Second neoplasms (solid cancer)
- 4. All of the above
- 5. None of the above

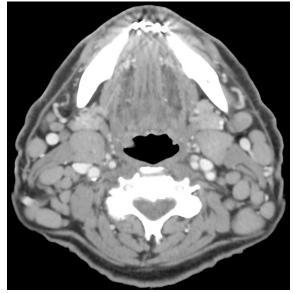
Which condition would you consider in your diagnostic reasoning at this time?

- 1. CLL progression
- 2. Richter transformation
- 3. Second neoplasms (solid cancer)
- 4. All of the above
- 5. None of the above

Would you perform a lymph node biopsy in this patient?

- 1. Yes, at the most accessible site independent of other considerations
- 2. Yes, preferentially at the site with the highest SUV after performing PET
- 3. Yes, but only if LDH is elevated
- 4. Possibly yes, but only in young and fit patients
- 5. No, because the patient is treatment naïve

Would you perform a lymph node biopsy in this patient?


- 1. Yes, at the most accessible site independent of other considerations
- 2. Yes, preferentially at the site with the highest SUV after performing PET
- 3. Yes, but only if LDH is elevated
- 4. Possibly yes, but only in young and fit patients
- 5. No, because the patient is treatment naïve

Diagnostic imaging evaluation

Lymph node biopsy:

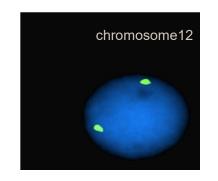

massive infiltration by small B lymphocytes CD5+CD23+

CT-PET: SUV <10; no evidence of transformation to aggressive disease

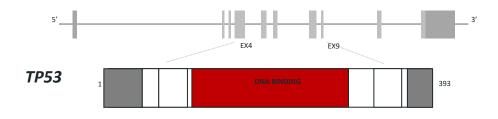
CT: lymphadenopathy – 5-8 cm nodes at multiple sites, hepatosplenomegaly

Clinical history: indication for treatment

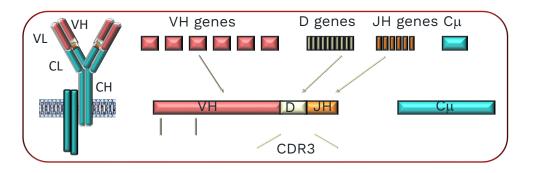
CLL Rai II/Binet B, symptomatic with B symptoms, nodal progression, hepatomegaly and splenomegaly


iwCLL guidelines for treatment initiation

	General practice	
Treat with Rai stage 0	NGI*	
Treat with Binet stage A	NGI*	
Treat with Binet stage B or Rai stage I or II	Possible*	If active disease
Treat with Binet stage C or Rai stage III or IV†	Yes	
Treatment of active/progressive disease	Yes	
Treat without active/progressive disease	No	


Abbreviations: NGI, not generally indicated

Biomarkers status in the patient

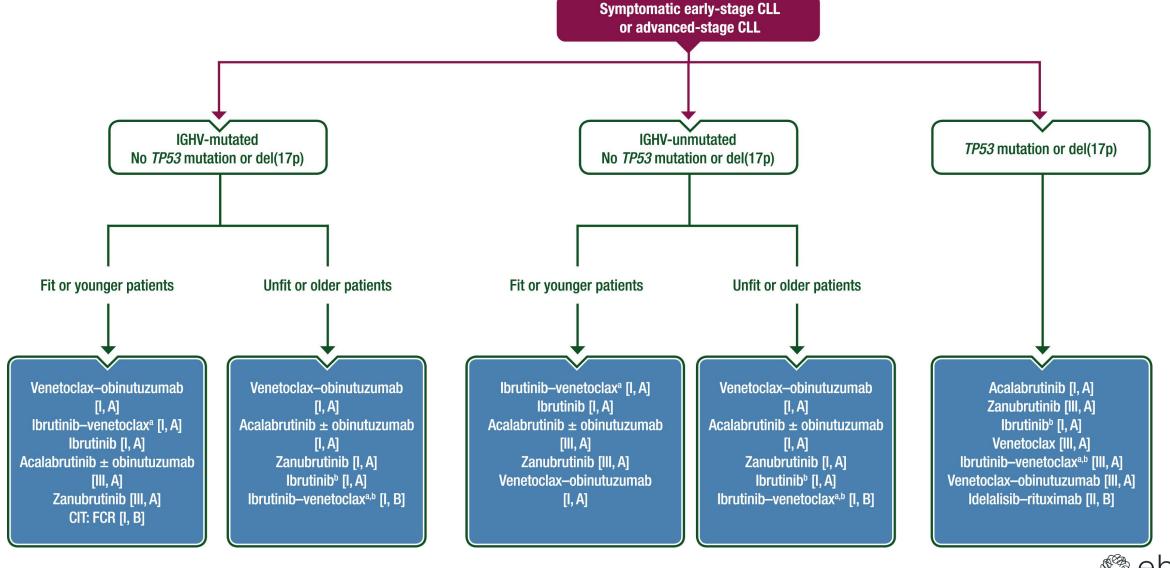

✓ Fluorescence in situhybridisation (FISH):✓ Negative

✓ TP53 mutational status:✓ Wild type (no mutation)

✓ Unmutated *IGHV* 4-39/IGHD6-13/IGHJ5 (subset #8)

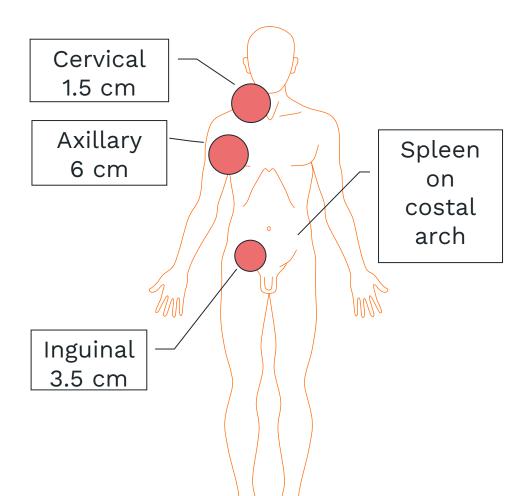
What would be your treatment choice in this patient in the pathway inhibitor era?

- 1. BR (bendamustine + rituximab)
- 2. Idelalisib + rituximab
- 3. A 2nd generation BTKi (e.g. acalabrutinib or zanubrutinib)
- 4. Ibrutinib + venetoclax (fixed duration)
- 5. None of the above



What would be your treatment choice in this patient in the pathway inhibitor era?

- 1. BR (bendamustine + rituximab)
- 2. Idelalisib + rituximab
- 3. A 2nd generation BTKi (e.g. acalabrutinib or zanubrutinib)
- 4. Ibrutinib + venetoclax (fixed duration)
- 5. None of the above



ESMO quidelines for first-line treatment

Clinical history

The patient was in remission for two years. At restaging during follow up, presence of progressive and symptomatic axillary lymphadenopaty; presence of elevated LDH

When Richter transformation is suspected, what is the best approach?

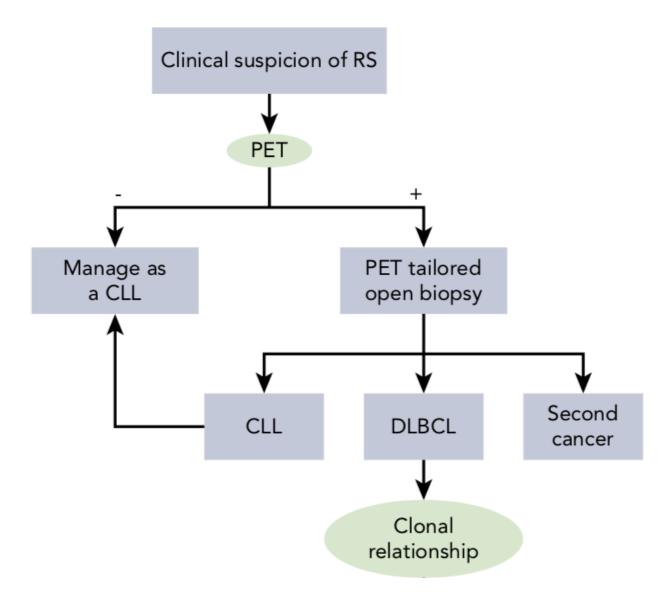
- 1. Perform a lymph node FNA
- 2. Perform a CT/PET scan
- 3. Treat the patient with high dose therapy without performing a biopsy
- 4. Any of the above
- 5. None of the above

When Richter transformation is suspected, what is the best approach?

- 1. Perform a lymph node FNA
- 2. Perform a CT/PET scan
- 3. Treat the patient with high dose therapy without performing a biopsy
- 4. Any of the above
- 5. None of the above

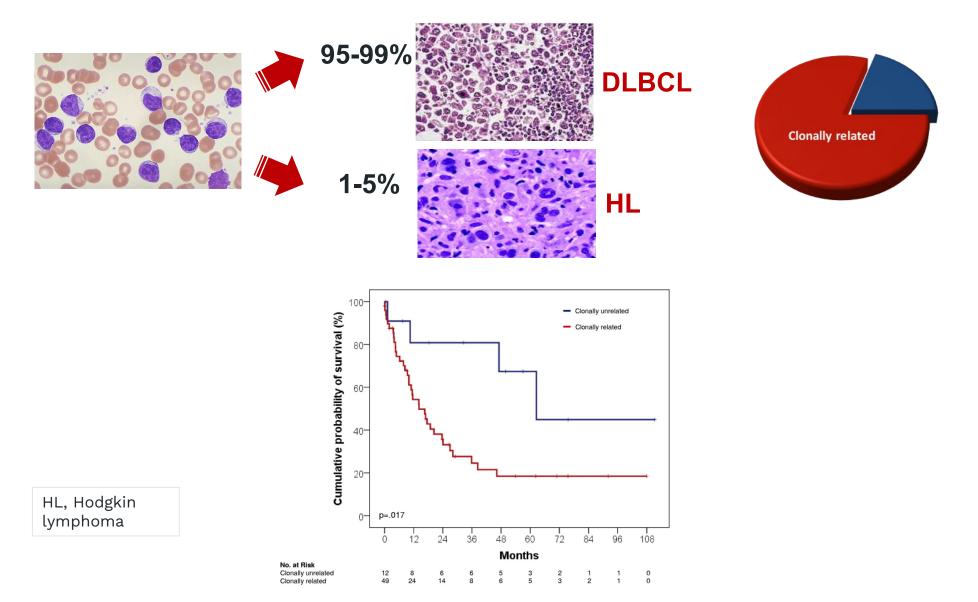
Which test may be important to evaluate the prognosis and may help in the choice of the correct therapy for Richter transformation?

- 1. Define the Rai stage of the CLL phase
- 2. Test for the presence of t(8:14) in the Richter biopsy
- Define the clonal relationship between Richter transformation and the CLL phase
- 4. Test the percentage of Ki-67 expression in the Richter biopsy
- 5. None of the above



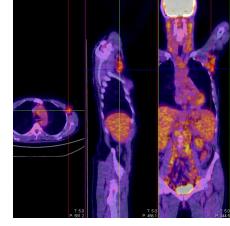
Which test may be important to evaluate the prognosis and may help in the choice of the correct therapy for Richter transformation?

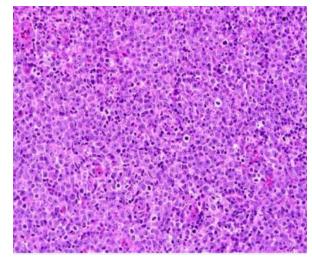
- 1. Define the Rai stage of the CLL phase
- 2. Test for the presence of t(8:14) in the Richter biopsy
- 3. Define the clonal relationship between Richter transformation and the CLL phase
- 4. Test the percentage of Ki-67 expression in the Richter biopsy
- 5. None of the above


Management of Richter transformation

DLBCL, diffuse large B-cell lymphoma

Management of RS





Clinical history: diagnosis of Richter transformation

CT/PET documents the presence of axillary lymphadenopathy with SUV = 12

A biopsy of the lymph node was performed and revealed transformation into DLBCL

Immunoglobulin analysis on lymph node biopsy demonstrates the same *IGHV* rearrangement found in the CLL phase

In a young patient with clonally-related DLBCL Richter syndrome, the preferred treatment option is:

- 1. Treat with R-CHOP, followed by a watch and wait strategy
- 2. Treat with venetoclax
- 3. Treat with bendamustine-rituximab (BR)
- 4. Treat with a BTKi
- 5. Enrollment in a clinical trial, followed by transplant if feasible

In a young patient with clonally-related DLBCL Richter syndrome, the preferred treatment option is:

- 1. Treat with R-CHOP, followed by a watch and wait strategy
- 2. Treat with venetoclax
- 3. Treat with bendamustine-rituximab (BR)
- Treat with a BTKi
- 5. Enrollment in a clinical trial, followed by transplant if feasible

Management of DLBCL-type RS

relationship Clonally Clonally related RS unrelated RS Clinical trial Manage as a de or chemoimmunotherapy (eg R-CHOP) novo DLBCL Fit Clinical trial Donor or follow-up RIC allo SCT **Auto SCT**

Clonal

RIC, reduced intensity conditioning; SCT, stem cell transplant

Clinical history: management of clonally related RT

Richter transformation (RT), DLBCL variant, clonally related to the CLL clone Patient ECOG PS 0, without significant comorbities Treated with within a clinical trial Consolidation with allo-tranplant. The patient obtained a complete remission

Discussion points

- ✓ Need to be suspect and rule out Richter transformation whenever appropriate at CLL progression
- ✓ Importance of testing CLL biomarkers at the time of treatment requirement
- ✓ Role of patients' preferences for continuous versus fixed duration treatment
- ✓ Relevance of pathological review by experienced hematopathologists for the diagnosis of Richter transformation

Take home messages

- ✓ Fixed duration regimens are an emerging option in treatmentnaïve CLL requiring treatment
- ✓ The choice of first line treatment is based on molecular predictors, fitness and age
- ✓ PET should guide tissue biopsy whenever Richter transformation is suspected
- ✓ Assessment of clonal relationship between CLL and Richter phase is important for patient management

References

- Ahn IE, Davids MS. Therapeutic targeting of apoptosis in chronic lymphocytic leukemia. Semin Hematol. 2024;61:109-118
- Eichhorst B, Ghia P, Niemann CU, et al. Clinical Practice Guideline interim update on new targeted therapies in the first line and at relapse of chronic lymphocytic leukaemia. Ann Oncol. 2024;35:762-768
- Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018 Jun 21;131(25):2745-2760.
- Moia R, Gaidano G. Prognostication in chronic lymphocytic leukemia. Semin Hematol 2024;61:83-90
- Mouhssine S, Gaidano G. Richter Syndrome: From Molecular Pathogenesis to Druggable Targets. Cancers (Basel). 2022;14:4644
- Mouhssine S, Maher N, Kogila S, et al. Current Therapeutic Sequencing in Chronic Lymphocytic Leukemia. Hematol Rep. 2024;16:270-282
- Munir T, Cairns DA, Bloor A, et al. Chronic Lymphocytic Leukemia Therapy Guided by Measurable Residual Disease. N Engl J Med. 2024;390:326-337.
- Patton JT, Woyach JA. Targeting the B cell receptor signaling pathway in chronic lymphocytic leukemia. Semin Hematol. 2024;61:100-108