Update on Congenital and Acquired neutropenia

EHA-ISHBT Hematology Tutorial

March 1-3, 2024 Hyderabad, India

F Fioredda Unita' di Ematologia IRCCS Istituto G Gaslini

My disclosures X4 Pharmaceutic Advisory board

LEARNING GOALS

Recognize and approach children and adults with low neutrophils to define the diagnosis

Adopt management strategies for neutropenia patients

Design appropriate follow-up according to the neutropenia type

NEUTROPENIA THRESHOLD

From 14 days to 1 year	< 1.0 x 10 ⁹ /L
Children > 1 year to adulthood	< 1.5 x 10 ⁹ /L
Adult	<1.8 x 10 ⁹ /L

```
Mild 1.0 - 1.5 (or 1.8 for adults) × 10<sup>9</sup>/L
Moderate 0.5 -1.0×10<sup>9</sup>/L
Severe <0.5 × 10<sup>9</sup>/L
```

Agranulocytosis <0.2×10⁹/L usually associated with a high risk of severe, life-threatening infections Acute <3months Chronic>3months

NEUTROPENIA *definition* & *classification*

According the criteria of degree, persistence, presence of extra-hematological signs

HemaSphere

* EHA

Guideline Article – Consensus based Open Access

The European Guidelines on Diagnosis and Management of Neutropenia in Adults and Children: A Consensus Between the European Hematology Association and the EuNet-INNOCHRON COST Action

Francesca Fioredda¹, Julia Skokowa², Hannah Tamary^{3,4}, Michail Spanoudakis⁵, Piero Farruggia⁶, Antonio Almeida^{7,8}, Daniela Guardo¹, Petter Höglund^{9,10,11}, Peter E. Newburger¹², Jan Palmblad^{10,11}, Ivo P. Touw¹³, Cornelia Zeidler¹⁴, Alan J. Warren^{15,16,17}, David C. Dale¹⁸, Karl Welte¹⁹, Carlo Dufour¹, Helen A. Papadaki^{20,21}

Correspondence: Francesca Fioredda (francescafioredda@gaslini.org); Helen A. Papadaki (e.papadaki@uoc.gr).

CLASSIFICATION of chronic neutropenias

Isolated

CONGENITA

 Associated with various extrahematological manifestations

 Associated with immunodeficiency/im mune dysregulation

 Associated with metabolic disorders and nutritional deficiency

 Associated with bone marrow failure

- Primary or Idiopathic √Antibody-mediated
- ACQUIRE √Non-antibody

mediated

- •Secondary due to √**Hypersplenism**
- √Infections
- **√Autoimmune diseases**
- **√Nutritional**
- deficiencies
- **√Hematologic diseases**
- √Drug-induced

QUIRED

C

۷

LIKELY

In children/adolescents, young adults

Late-onset/Long lasting

DIAGNOSTIC ALGORYTHM 1

Isolated chronic neutropenia with/without extrahematological symptoms/signs suggestive of an underlying congenital neutropenia syndrome

Symptoms/signs suggestive of an underlying congenital neutropenia syndrome

FAMILY HISTORY

Consanguineity Malformations Neutropenic relatives & unexplained infant death or miscarriages Infections type and time

CLINICAL EXAMINATION

Failure to thrive

Cognitive impairment

Developmental delay

Dysmorphism (mainly skeletal)

Nail, hair or skin abnormalities (i.e. superficial veins)

Signs of bronchiectasis

Organ enlargment or malformation (liver , spleen , heart, genitourinaryjoint symptoms) and finally signs of photophobia, nystagmus, oculocutaneous albinism, and neuropathy.

Symptoms/signs suggestive of an underlying congenital neutropenia syndrome

PERSONAL & FAMILY HISTORY Consanguinity Malformations Neutropenic relatives & unexplained infant death or miscarriages Infections type and time

- >>Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus pyogenes
- << Candida spp & Aspergillus spp

NP DIAGNOSIS in children

Significative elements to produce a score

key informations needed to make a diagnosis of congenital neutropenia

Family history/consanguinity

Any associated morbidity

Severe infections (Cellulitis; pneumonitis; any sepsis; any deep bacterial infections)

Stomatitis or gingivitis

Monocytes >1.5 × $10^9/I$

Hemoglobin <90 g/l or platelets <150 \times 10⁹/l

DIAGNOSTIC FAST TRACK

Severe neutropenia (either isolated or associated to any signs of complex syndromes)

Severe infections (sepsis, meningitis, osteomyelitis, deep abscesses/flemmons or pneumonia) or recurrent/torpid infections (i.e. otitis, masthoiditis, skin abscesses, urinary tract infections, enteritis)

Early infancy

First level investigations & bone marrow examination

Targeted genes analysis

Sanger tecnique

PATHOGENETIC MECHANISMS

Block in the bone marrow

LEF1 e CEBP αlfa HYPOESPRESSION **Block at Promyelocytes**

PU1 Hyperespression Monocytes proliferation

JAK2 e STAT5 activation **Prolypherative stimulus**

> Skokowa J Hematol Oncol Clin N Am 2013

Symptoms/signs suggestive of an underlying congenital neutropenia syndrome

FAMILY HISTORY

Consanguinity

Malformations

Neutropenic relatives & unexplained infant death or miscarriages

Infections type and time

CLINICAL EXAMINATION

failure to thrive cognitive impairment developmental delay dysmorphism (mainly skeletal) nail, hair or skin abnormalities (ie superficial veins) signs of bronchiectasis organ enlargment or malformation (liver , spleen , heart, genitourinaryjoint symptoms) and finally signs of photophobia, nystagmus, oculocutaneous albinism, and neuropathy.

Neutropenia galaxy

ISOLATED SCN

ELANE -	
CSF3R	
CXCR2	
WAS GOF	

SCN ASSOCIATED TO

Various extra-haematological sign

,

HAX1
G6PC3
GFI1
TAZ
VPS13, VPS45
COH1
SMARCAL1
JAGN1
DNM2
TCGIR1
DNMT3
SEC61A1
HYOU1
LAMTOR2
SMARCD2
CEBPE
EIF2AK

Genetic variants -SCN

	<i>ficionau</i>	(dueno qui	ation
mmunoae	ncienco	lavsreau	OLION

CD40L ADA2 FAS, FASL, CASP10 AK2 AP3B1 CLBP RAB27A PRF1-UNC13D-STX11-STXBP2 RMRP LYST STK4 CXCR4 GATA2 WAS LOF

Metabolic diseases

TCN2 SLC37A /G6PT1(Glicogenosi1b) PCCA-PCCB (Propionico-aciduria) MMUT-MMAA-MMAB-MCEE-MMADHC IVD Tyrosinemia GBA

Bone Marrow Failure

FANC genes RPS19,RPL5,RPS26,RPL11, GATA1 TSR2 HEAT3 RMRP SAMD9,SAMD9L SBDS,EFL1, DNAJC21 SRP54 hTR,TERT,TINF2,DKC1, ACD,TERC NOPO10,WRAP53,NOLA3, TCBI,RTEL1, CTC1,PARN, USB1

Genetic tests: choice of technique

Sanger (single gene) when strong evidence (inheritance, clinical findings, bone marrow appearance i.e. block at the promyelocyte stage) for a specific gene mutation.

- ✓ ELANE maturation arrest
- ✓ TAZ cardiomiopathy
- ✓ G6PC3 cardiomiopathy
- ✓ SDS malabsorption, fatty stools, bone anomalies

NGS/WES

- ✓ Congenital neutropenia without evidence for a specific gene
- ✓ Consider inclusion in NGS panels of PID/PIRD,BFM, metabolic genes
- ✓ Trios and functional studies for VUS

WGS/and RNA seq If a genetic cause is not identified by the above methods

CLBP apoptosis of myeloid progenitor related to mitochondrial dysfunction

Warren JT, Blood 20 CXCR2 impaired neutrophil egression from bone marrow &neutrophils homeostasis

Marine-Esteban V, Haematologica2022

DBF4 *defect in DNA trascription*

Willemsen J All Clin Immunol 2023

SRP19 and SRPRA protein processing, intracellular trafficking and homeostasis

SCN NATURAL HISTORY

- ✓ Recurrent infections
- ✓ Not always easy eradication

Infections even lethal

Trasformation to MDS/ AL

SCN treatment

G-CSF

Tailored therapy: minimal dose for the best effect standard 5 gamma/kg/die)

Goal: absolute neutrophil count (ANC) 1.0 - 5.0 X10⁹/L

G-CSF responders 90% of pts

Responders till 15 µg/Kg/d Scarse responders 15-20 µg/Kg/d No responders > 20 µg/Kg/d

Donadieu J, Haematologica 2005, Welte K Sem Hematol 2006, Fioredda F, Am J Hematol 201

G-CSF Reduction of infections lethality

PEGFILGRASTIM in SCN

PT1

PT2

Increase of ANC Reduced incidence of infections Similar drug exposure

50-60 mcg/kg/week Medium ANC 1.280/mmc/L

SF36

European Reference Network

Physical function role physical, bodily pain , general health, vitality, social function, role emotional, mental health

HAEMATOPOIETIC STEM CELL TRANSPLANTATION

TRM 17 % infections, GvHD, organ damage, relapse

cGVDH 28%

>> bone marrow vs peripheral cells vs cord

INDICATION TO HSCT

Strong Indication to HSCTG-CSFHSCTMDS/AML or BM dysplastic features (monosomy 7, trisomy 8, trisomy 21)Image: CN due to mutations carrying an intrinsic high risk of leukemic transformation per seNo response to G-CSF (doses >20mcg/kg/day), poor response to G-CSF(10 -20 mcg/kg/day)

or poor control of infection irrespective of the G-CSF dose

Potential indication to HSCT Adequate management of infections with G-CSF at "intermediate doses" (10 mcg-15 mcg /kg/day) with availability of a healthy HLA-identical sibling or HLA identical matched donor

Weak indication to HSCT G-CSF response at doses up to 10 mcg/kg/day, good tolerability and compliance to daily subcutaneous injections, infections control and unavailability of HLA-matched donors

ALTERNATIVE TREATMENT

Antioxidants (mut Ak2)

RissoneA J Exp Med 2015

Wnt3a + <<GCSF (ELANE-C223X.iPS)

Hiramoto T Proc Natl Acad Sci U S A 2013

NICOTINAMIDE +<< G-CSF

Deoardieva E , BJH 2021

Sivelestat (ELANE- Q97P el118N)

Nayak RC j Clin Invets 2015

Mavorixaflor phase 2 st (WHIM)

Dale D Blood 2020

Empaglifozin (G6PC3 and Glic 1b)

GENE Therapy

Gene mutation correction Autologous Infusion

Tran NT Mol Ther 2020

Wortmann Sb , Blood 2020, Boulangier C, J Inherit Metab Dis 2022

EMPAGLIFOZIN

G6PC3 and G6PT/SLC37A4 deficiency

Missing defosforilation of 1,5-anydroglucitol-6-posphate (1,5 –AG6P)

Accumulation inside neutrophil \rightarrow inihibition of glucose utilization by the neutrophil-> disfunction

Empaglifozin counter acts the renal riabsoption of 1,5-AG6P

Wortmann SB Blood 2000, Boulanger C J Inherit Metab Dis 2022

Empagliflozin or dapaglifozin French Registry

0.2mg/kg/day or 0.4mg/kg/day

21 patients (GSD1b 14, G6PC3 7) Median fUP 0.8 yrs Median age at start th 18.8 yrs(0.4 37.7)

•Lower value of 1,5-AG in plasma

- Increase value of neutrophils
- •Reduced dose of G-CSF (from 2,5 ug7kg/d to 0.31 ug/kg/d)
- Reduced IBD
- •Less damage ro ER in the neutrophild (electronic image)
- •Side effects Neutrophilia in G6PC3, transient vomit

MAVORIXAFLOR in CXCR4 NP

Mavorixafor is an oral small molecule selective antagonist of the CXCR4 receptor that increases mobilization and trafficking of white blood cells from the bone marrow.

SEVERE CONGENITAL NEUTROPENIA rationale for follow up

To monitor neutropenia associated clinical manifestation (gingivitis, periodontitis) and G-CSF chronic side effects (splenomegaly, osteoporosis etc)

To adjust G-CSF doses according to individual infective burden

To monitor the risk of MDS/AML risk transformation

NEED FOR FOLLOW UP AND FREQUENCIES

Annual BM or more often if count drops

- morphology
- cytogenetics
- NGS for somatic mutations in malignant myeloid genes to intercept CLONAL EMOPOIESIS and early MDS/Leukemia

(CSF3-R, RUNX1, TP53 biallelic mutations in SDS)

CSF3-R mutations may stay as such for years w/out development of leukemia

Predictors of transformation to MDS/AML

Marrow dysplastic changes

• Cytogenetic abnormalities: trisomy 21, monosomy 7, del q7

 Somatic leukemia-associated mutations CSF3R, RUNX1, ASXL1. Also PTPN11, TP53,SETBP1 in combination with CSF3R

• In SDS biallelic TP53 mutations

DIAGNOSTIC ALGORYTHM 2

DUFFY null phenotype -/-

Red Blood Cells Endothelial cell

(DARC) Duffy Antigen Receptor for Chemokines or (ACKR1) Atypical Chemokine Receptor 1

Rs2814778 polymorphism DARC/ACKR1 gene

ADAN mechanism

DARC/ACKR1 Atypical chemokine receptor

CCL2, CCL5,CCL7.CCL11,CCL13.CCL14,CXCL6, IL8/CXCL8, GRO, RANTES, MCP-1

Fcy receptors expression (CD16/CD32 e CD45) on leukocytes Neutrophils migration in the spleen

Duchene J, Nature Immunology 2'017. Rappoport N BJH 2018, Palmblad JPBC 2018, Mintz U Blood 1973, Dancey JY Am J medicine Shoenfeld Y Biomedicine & Pharmacotherapy1985, Phillips D Journal of Clinical Pathology 2000, Hsieh MM Journal of Clinical Oncology 2010

First-line investigations

CBCs, PB smear, biochemistry tests including liver and kidney function, immunoglobulin levels, CRP, vitamin B12 and folate, flow cytometric analysis of PB lymphocyte subsets, virology antibody screening (i.e., HepB, HepC, HIV, EBV, CMV, and Parvovirus), **indirect antineutrophil antibodies (GIFT, GAT, and other);** thyroid hormones (FT3, FT4, TSH), antithyroid antibodies (anti-TG and anti-TPO).

Additional investigation in children: flow cytometric analysis of TCR- α/β positive double-negative (CD4- and CD8-) CD3 PB lymphocytes. Additional investigations in adults: antiphospholipid and anticardiolipin antibodies, flow cytometric analysis of LGL/TCR clonality in PB lymphocytes, serum ferritin, RF, ANA, ENA, ds-DNA, and ESR

CLASSIFICATION of chronic neutropenias

Isolated

 Associated with various extrahematological manifestations

CONGENITA

 Associated with immunodeficiency/im mune dysregulation

 Associated with metabolic disorders and nutritional deficiency

 Associated with bone marrow failure Primary or Idiopathic

 Antibody-mediated
 Non-antibody mediated

 Secondary due to

 Hypersplenism
 Infections
 Autoimmune diseases
 Nutritional deficiencies
 Hematologic diseases
 Drug-induced

LIKELY ACQUIRED

In children/adolescents, young adults Late-onset/Long lasting

ACQUIRED NEUTROPENIA 1

PRIMARY AUTOIMMUNE/IDIOPATHIC NEUTROPENIA of infancy

- Early infancy
- Usually detection by chance
- Rather low rate of severe infections
 (10%)
- Self limiting course within 24 -36 mo

Presence/absence of AbantiN !!

Farruggia P, Am J Hematol 2015, Farruggia P et al Am J Hematol 2019

Management of primary AIN/IN

Counselling and contact

THERAPY

- Avoid overtreatment (blood count 3-4 times/y, repeat
- Repeat Ab against neutrophils if negative
- ✤ No need for basal bone marrow examination
- In case of recurrent of deep/severe infections
 G-CSF
- G-CSF schedule: preferably on demand use of the least dose for the best effect (1-3 ug/kg)

Why FUP?

Family reassurance (time of resolution not always short...)

Verify the remission of pAIN/pIN

SUDDEN resolution 70 % of cases TRANSIENT/ INTERMITTENT oscillation in 30% of cases FOLLOW-UP

ACQUIRED NEUTROPENIA 2

SECONDARY AUTOIMMUNE NEUTROPENIA

Children

Recovery: primary vs secondary AIN of infancy

Adults

- Evans
- Autoimmune Thyroiditis
- SLE
- Sjogren syndrome
- Rheumatoid arthritis
- Felty's syndrome
- Crohn disease
- Autoimmune hepatitis
- Multiple sclerosis
- Drug
- Neoplasm/BMT

Farruggia et al, Am J Hematol 2017

CHRONIC IDIOPATHIC NEUTROPENIA

ADULTS

Mild clinical phenotype/ mild NP

Pro-apoptotic mediators in the bone marrow

Leuco/lymphopenia

Occasionaly altered immunoglobulin levels (<lgG,<lgA and > lgM)

> naïve B IgD⁺ CD27⁻ cells

< class-switched memory B lgD⁻ CD27⁺ cells

AntiN Ab negative

Management of CIN/sAIN

In case of recurrent of deep/severe infections G-CSF (the least dose for the best

protection against infections)

Which type of FUP?

Blood Cell Count (morphological evaluation) every 3-4 months

BONE MARROW in patients with decreasing ANC or additional changes in other blood cell count (i.e.macrocytosis or morphological abnormalities) or in patients treated continuously with G-CSF

NGS panel/ Flow cytometry to exclude somatic variants

Somatic clones with VAF>10% closer follow-up (>4 times/year)

Consider Genetic investigations for constitutional variants

......What about neutropenic Children with /without Ab Whose **NEUTROPENIA** does not remit??? ...not associated with Other AI disorders?

Long lasting/late onset AUTOIMMUNE & IDIOPATHIC Np

- Persistent neutropenia (>36 months if onset <3 years,
 >12 months if onset >3 years)
- Antineutrophil Antibodies POSITIVE and NEGATIVE
- No other cytopenias and related autoimmune disease at onset

DIAGNOSIS

Characteristic of the Cohort

	Total, n = 63	
Female, n (%)	31 (49)	
Type of neutropenia, n (%)		
Positive anti-neutrophil Abs (AIN)	32 (49)	
Negative anti-neutrophil Abs (IN)	25 (40)	
LO-Np	45 (71)	
LL-Np	18 (29)	
Median age at onset (yrs) (IQR) (min-max)	9.2 (0-23.9)	
Median age at diagnosis (yrs) (IQR) min-max	12.9 (0.3-50.9)	
Median follow-up time (yrs) (IQR) min-max	5.2 (1.3-30.7)	

Fioredda F, AJH 24

Infections

Frequency 71.4% (45/63)		N (%) patients with RECURRENCE	
Upper respiratory infections	27 (60)	18/27 (66.7)	
Aphthae, gingivitis, periodontitis	22 (48.9)	19/22 (86.4)	
Skin infections	13(28.9)	8/13 (61.5)	
Fever of unknown origin (FUO)	16 (35.6)	11/16 (68.7)	
Otitis	11 (24.4)	7/11 (63.6)	
Pneumonia	8 (17.8)	2/8 (25)	
Urinary tract infections	6 (13.3)	1/6 (16.7)	
Severe infections	6 (13.3)	SEPSIS, MENINGITIS, PNEUMONIA (>1), PERICARDITIS	
"Opportunistic" infections	3* (6.7)		
* 2 recurrent Herpes Zoster, 1 Camp	oylobacter Jejuni		

Recurrence in 25/45 (55.6%) oral infections + upper airway + otitis

Fioredda F, AJH 2024

Autoimmunity

Positive ANA, ENA, Thyroiditis, coeliac disease, ALPS, arthritis, bone pain, chronic fatigue

Blood count overtime

Fioredda F, AJH 24

European Reference Network

Immune profile

IgG/IgA/IgM normal values in 85-94% Hyper IgM 11.5% patients Low CD8/B/NK cella, Tregulatory, B memory
High γ/δ, HLADR+ T cells
Low B switched memory
Increased marginal zone B lymphocyte
Increased Double Negative B cells(total and DN2) and CD21 (DN1)
Shift T : naive >>memory effector

Found in several autoimmune diseases/CVID!!

Schiavo E, 2012, Mavroudi I 2008, Walter J, 2019, Mormile I, 2021

*Ranges according to the age

Machine Learning Analysis AUTOIMMUNE vs IDIOPATHIC

p-value = 1.0 => **NO DIFFERENCE !!!**

«NEW PHENOTYPE»

- Mild/silent phenotype at all ages
- Leukopenia& signs of immune-dysregulation
- Possible appearance of autoimmunity
- Antibodies against neutrophils +/-

WHAT 'S UNDERNEATH?

Genetic profile

NGS panel 160 variants of bone marrow failure/immunedyregulations

Analyzed 27/58 available samples

Fioredda F, AJH2024

NEUTROPENIA & PIRD/PID

Hadjadj J Blood 2019, Fioredda F Blood Advance 2020, Fioredda F AJH 2024

CLASSIFICATION

of chronic neutropenias

ACQUIRED

ACQUIRED

LIKELY

- Isolated
- CONGENITAL

 Associated with various extrahematological manifestations

- Associated with immunodeficiency/imm une dysregulation
- •Associated with metabolic disorders and nutritional deficiency
- Associated with bone marrow failure

- Antibody mediated
- Non-Antibody mediated
- Secondary to
 - ✓ Hypersplenism
 - ✓ Infections
 - ✓ Auotimmune diseases
 - ✓ Nutritional deficiencies
 - ✓ Hematologic diseases
 - ✓ Drug induced

.....POSSIBLE CONTINUITY...... !

THE "LIKELY ACQUIRED" PHENOTYPE

CYTOPENIA as SIGN OF PRIMARY IMMUNODISREGULATION DISORDER (PIRD)

WES in CIN

CHRONIC IDIOPATHIC NEUTROPENIA in 16 adults Median age 59 yrs (30-72 yrs)

Bone
MarrowFailure

G6PC3 FANCM CTC1 PIRD Primary Immune Dysregulation Disorders

> DCLRE1C ORAI 1 SPINK5 PEPD

Autoinflammatory disorders

MEFV IRF7 PSMG2

Which type of FUP?

- Monitoring the patients for the appearance of systemic autoimmune symptoms and disease or survelling any change in lymphocyte subset and immunoglobulin pattern
- Management of symptoms (i.e. aphate, atrhalgia, thyroiditis etc) with rheumatologists/endocrinologist if needed
- Enlarge the genetic analysis with more wide and/or modern technique

#