

Indian Society of Hematology & Blood Transfusion

5th ISHBT-EHA Tutorial 01st - 03rd March 2024

Alexandros Spyridonidis

Professor of Hematology

University of Patras

Greece

EHA-ISHBT Hematology Tutorial

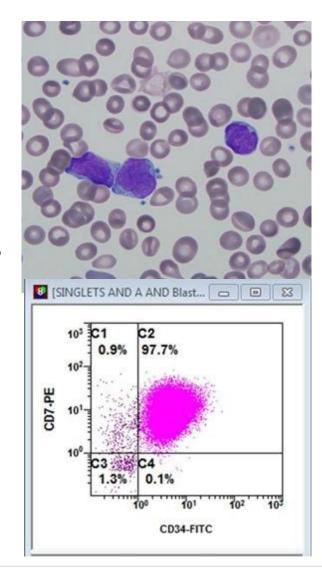
Clinical Case – Session Overview of Stem Cell Transplantation – Focus on Haploidentical SCT

Speaker: Alexandros Spyridonidis Hyderabad, India

March 1-3, 2024

ehaweb.org

CLINICAL: Presentation


- A 32 year old male, computer scientist, presented to another hospital, with sore throat and fever for 3 days not responding to antibiotics
- Now he came to emergency room because of red spots on Legs
- History: β-thalassaemia trait, no medications
- Petechiae
- Lymphadenopathy (neck, axilla, inguinal)
- WBC: 140 × 10⁹/l, Hb 97 g/l, PLTs 20 × 10⁹/l
- LDH = 6803 IU/L, ALT and AST slightly elevated
- Mononucleosis spot test negative

CLINICAL: Diagnosis ETP

Early T-cell precursor ALL (ETP)

- PB smear: 80% agranular blasts
- BM smear: 95% agranular blasts
- BM FACS: 98% blasts CD3+, cytoplasmic CD3+, CD2+, CD7+, Tdt+, CD34+, HLA-DR+, CD1a- (non- thymic)
- Lumbar puncture: negative
- CT: LN enlargement max 4 cm
- NGS: ND
- Karyotype: failed, FISH BM: KMT2A rearrangement

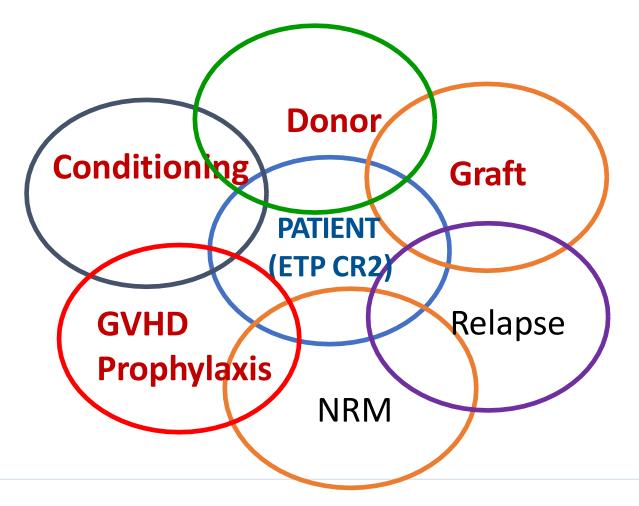
CLINICAL: Therapy

- Hyper-CVAD with intrathecal prophylaxis
- No asparaginase
- No MRD studies
- Prophase + IA+IB → blasts BM 4% (FACS)
- IIA + IIB→ CR-1 blasts < 1% (FACS)
- HLA typing completed, referred to our BMT Unit

QUESTION: Should we transplant patients with T-ALL in CR-1?

DISCUSSION: How do I decide to transplant?

- High risk features
 - Immature, non thymic T-ALL
 - High WBC> 100 × 10⁹/l
- Frontline therapy
 - Non-pediatric- inspired protocol
 - No asparaginase
- High risk genetics (KMT2A)
- No MRD data
- No good rescue therapies (e.g. CAR-T, bispecifics) if relapse


Nicola Gökbuget et al. Management of ALL in Adults: 2023 ELN Recommendations from a European Expert\ Panel. Blood 2024; February 2 https://doi.org/10.1182/blood.2023023568

CLINICAL: Relapse

- Consolidation I
- Diplopia, eyelid ptosis,
- RELAPSE with CNS, extramedullary (LN), BM, PET positive
- HD-methotrexate (MTX) 5g/m²→ refractory
- Nelarabine + cyclophosphamide + asparaginase
- CR-2 (FACS, no MRD studies, CNS free)

CLINICAL: The transplant challenge; one size does not fit all

QUESTION: DONOR

QUESTION: What examination would you ask for?

WMDA search		T-ALL, 32y, male								
	A*	B*	C *	DRB1*	DQB1*		ABO	CMV	Sex	
Pt	11:01	12:02	04:01	15:02	06:01		A+	+	M	
	68:01		03:01	16:01	05:02					
D1	11:01	12:02	04:01	15:02	06:01		0+	-	F	
	68:01	01:03	03:01	16:01	05:02					
D3	11:01	12:02	04:01	15:02	06:01		0+	+	F	
	68:01		03: 02	16:01	05:02					

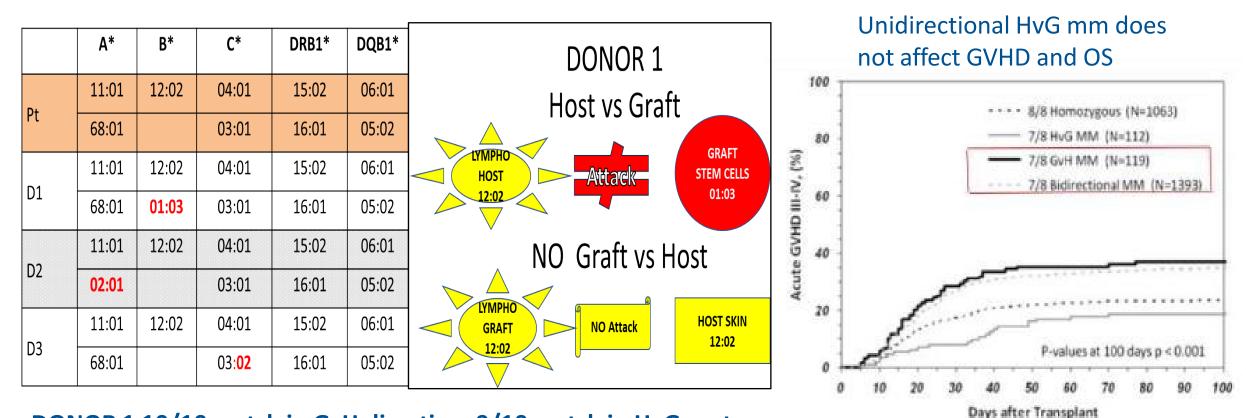
DISCUSSION: Check in the recipient for anti-HLA Donor Specific Antibodies (DSA)

- If you have to choose between mismatched(mm) donors in different loci than check for HLA DSA (especially multitranfused patients)
- Avoid mismatch to which the recipient is sensitized
- Graft failure/ late and partial engraftment is significantly increased when the recipient has DSA against the donor's HLA mismatch
- This is clear in haplo but also can be seen in unrelated donors

QUESTION: Which donor would you select?

WMDA :	search	T-ALL, 32y, male								
	A*	B *	C*	DRB1*	DQB1*		ABO	CMV	Sex	
Pt	11:01	12:02	04:01	15:02	06:01	NO DSA	A+	+	Μ	
	68:01		03:01	16:01	05:02					
D1	11:01	12:02	04:01	15:02	06:01		0+	-	F	
	68:01	01:03	03:01	16:01	05:02					
D3	11:01	12:02	04:01	15:02	06:01		0+	+	F	
	68:01		03: 02	16:01	05:02					

DISCUSSION: Algorithm for selecting a mm donor


HLA has the highest priority in selecting donor

DSA

- Imax 7/8 mm (A, B, C, DRB1) though new studies with more mm and post-transplant cyclophosphamide (PTCY) are encouraging
- \Box Ag = allele mm
 - DQB1 > C allele mm > C Ag mm >= B mm >= A mm
 - immune responses may be influenced by HLA expression levels and specific epitope amino acid variations

DISCUSSION: If D or R is homozygous at one locus, check mm vector (HvG mm is permitted)

DONOR 1 10/10 match in GvH direction, 9/10 match in HvG vector DONOR 2 and 3 is 7/8 match in GvH direction

QUESTION: Is there a benefit in waiting for a completed UD vs proceeding directly with an haploidentical donor?

DISCUSSION: UD vs haploidentical donor

□It is important to recognize the urgency of transplant, unrelated donor availability and registry metrics

- Data are growing on the similarity in outcomes between haplo-SCT and MUD-SCT
- Search in parallel with other graft sources as donor risk index (DRI) is factored in

Are there contraindications for haplo family donor?

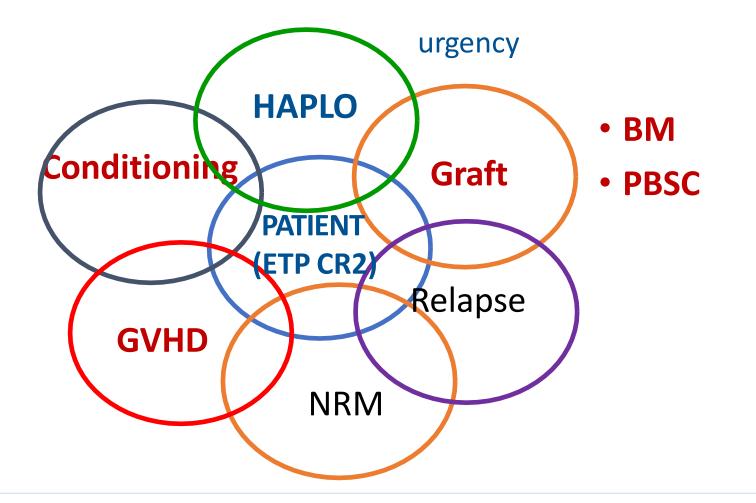
- Patient ALL (no familial genetic disorder)
- Living relatives, willing to donate
- Patient no anti-HLA DSA detected

QUESTION: Which Haplo-Donor would you select?

- Father 65 years, CMV pos, A+, CMV pos, cardiac problems,
- Mother 53 years, 1 child, no medical history, CMV pos
- No siblings
- 1 cousin 18 years, CMV negative, HLA not matched

DISCUSSION: Donor

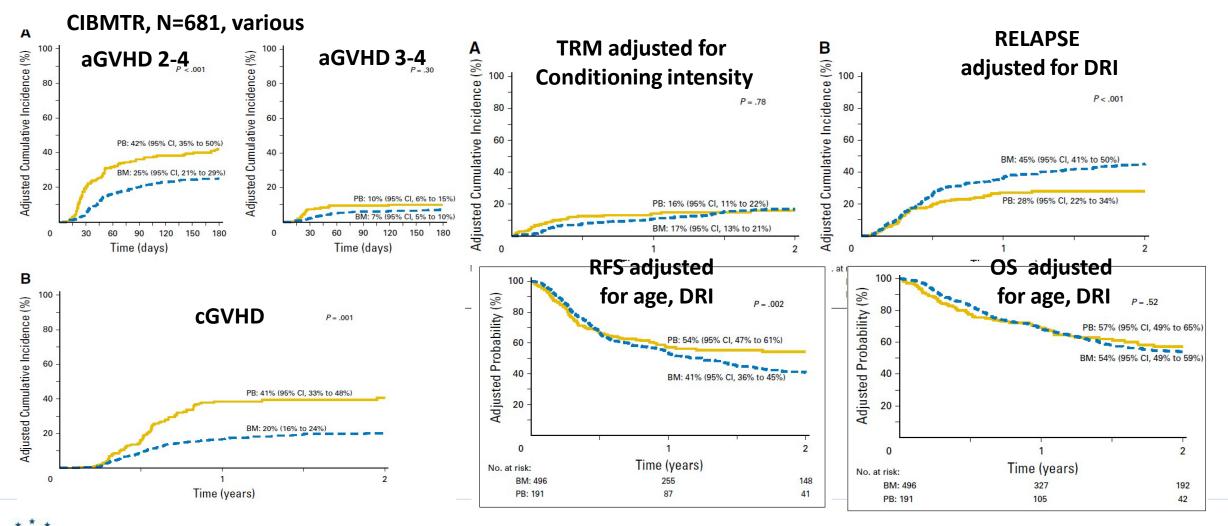
- Father 65 years, CMV pos, A+, CMV pos, cardiac problems,
- Mother 53 years, 1 child, no medical history, CMV pos
- No siblings
- 1 cousin 18 years, CMV negative, HLA not matched



CLINICAL: Haplo-SCT

- Immediate proceed to SCT
- No anti-HLA DSA detected
- We decided to proceed with Haplo
- Haplo-related Donor: mother (55 years)
- CMV serostatus: +/+, Blood group: A+/A+
- Graft: BM xxx TNC
- GvHD Prophylaxis: PTCY, TD 100 mg/kg (d+3,+5), CyA d+6, MMF D+6-D+28

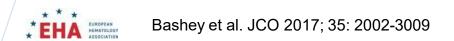
QUESTION: Which graft would you prefer?



DISCUSSION: Haplo BM vs PBSC?

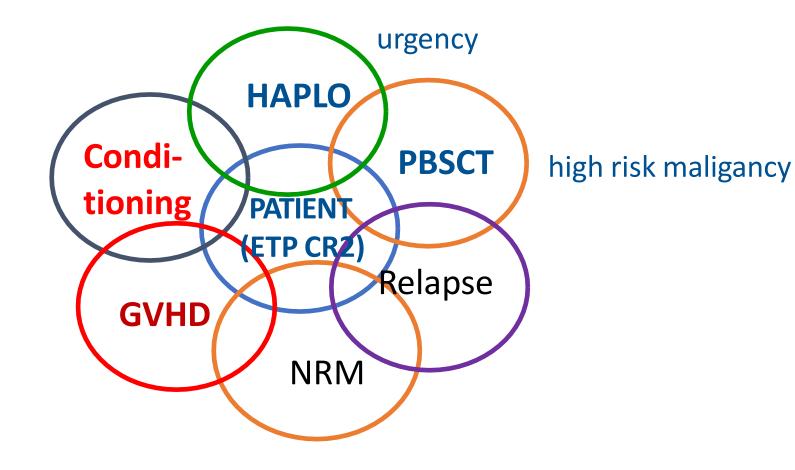
- PBSCT: no anesthesia, less logistics,
- BM, experienced harvesters to get high mononuclear cell count (MNC) (better PFS)
- Engraftment: PBSCT vs BM 1-2 days earlier
- aGVHD: PBSCT > BM in some studies
- cGVHD: PBSCT > BM in some studies
- OS: most studies no difference (especially in CR-1 pts)

DISCUSSION: Haplo-PBSC may be associated with reduced relapse



Bashey et al. JCO 2017; 35: 2002-3009

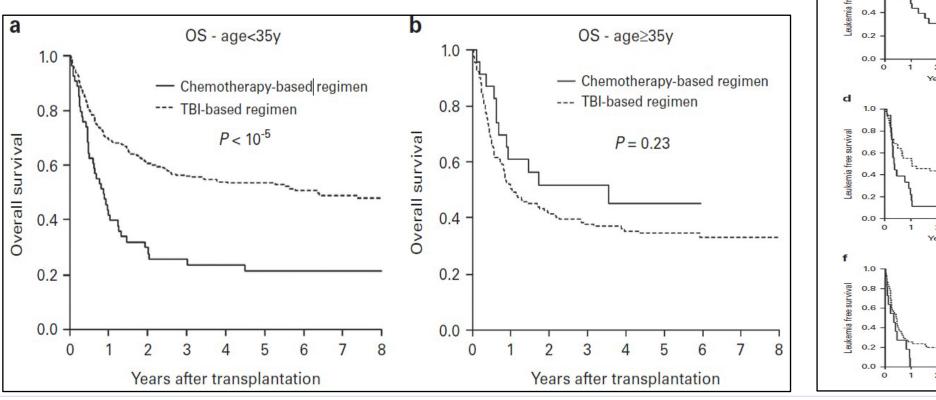
HEMATOLOG


CLINICAL: Haplo- PBSCT (Mother)

- We decided on PBSCT as patient had a high risk malignancy and was in good functionl status
- CD34+:

QUESTION: Which conditioning would you use?

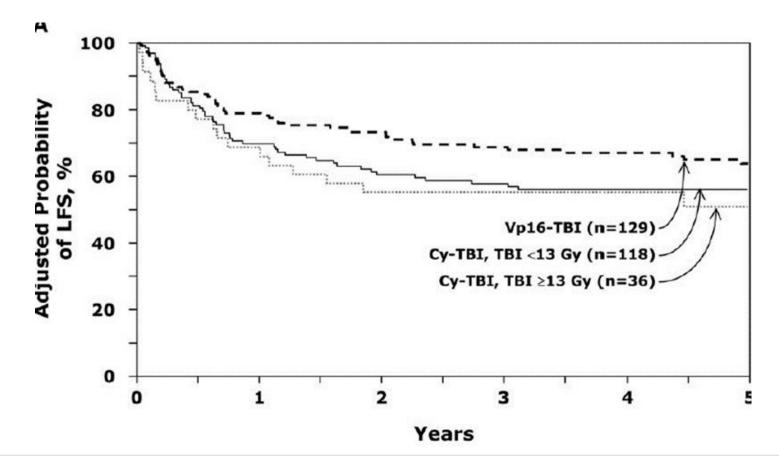
- TBI OR CHEMO
- IF TBI WITH WHICH CHEMO?
- IF ONLY CHEMO WHICH?
- WHICH INTENSITY?



DISCUSSION: Lower relapse: TBI vs BU in T-ALL

EBMT, Retrospective, 601 pts

- Same TRM in younger but higher TRM in older pts
- Lower RR with TBI



age<35y b LFS in CR1 1.0 $P = 2.10^{-3}$ - Chemotherapy-based regimen --- TBI-based regimen 0.8 Leukemia free survival 0.6 2 3 4 Years after transplantation LFS in CR2 P = 0.01- Chemotherapy-based regimen --- TBI-based regimen 2 3 4 6 Years after transplantation LFS in advanced disease P = 0.13Chemotherapy-based regimer TBI-based regimen 2 3 4 5 6 Years after transplantation

HEMATOLOG

DISCUSSION: potential benefit with VP16 in CR-2

CIBMTR, adult and pediatric ALL, TBI/Cy vs TBI/VP16

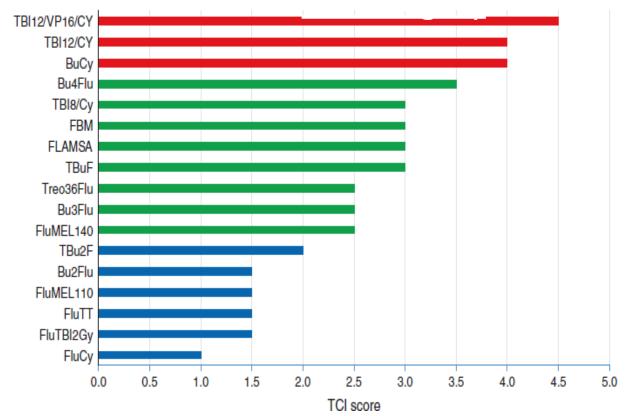
DISCUSSION: Thiotepa in ALL shows anti-leukemic activity

- Penetrates CNS
- Part of the TBF regimen
- TBF: Thiotepa, Busulphan, Fludara

TBF : intensity variation

Donor	SIB		WM	WMUD		JD	HAPLO	
Patient	Regimen	CRT-I	Regimen	CRT-I	Regimen	CRT-I	Regimen	CRT-I
young, high risk	TB4F90	4	TB4F120	4.5	TB4F150	5	TB4F150-PTCY	6
young	TB3F90	3	TB3F120	3.5	TB3F150	4	TB4F150-PTCY	5
old/reduced PS	TB2F90	2	TB2F90	2.5	TB2F150	3	TB2F150-PTCY	4
active disease	+ precon	+0.5	+ precon	+0.5	+ precon	+0.5	+ precon	+0.5

EBMT matched paired ALL TBI-CY vs Thiotepa based: non inferiority



Redefining and measuring transplant conditioning intensity in current era: a study in acute myeloid leukemia patients

TCI score: Sum of the weights for each component

Component	Dose level	Added points for			
	Low	Intermediate	High	each dose level	
TBI fractionated (Gray)	≤5	6–8	≥9	1	
Busulphan (mg/kg)	≤6.4 iv & ≤8 po	9.6 iv & 12 po	12.8 iv & 16 po	1	
Treosulfan (g/m2)	30	36	42	1	
Melphalan (mg/m2)	<140	≥140	≥200	1	
Thiotepa (mg/kg)	<10	≥10	≥20	0.5	
Fludarabine (mg/m2)	≤160	>160		0.5	
Clofarabine (mg/m2)	≤150	>150		0.5	
Cyclophosphamide (mg/kg)	<90	≥90		0.5	
Carmustine (mg/m2)	≤250	280-310	≥350	0.5	
Cytarabine (g/m2)	<6	≥6		0.5	
Etoposide (mg/kg)	<50	≥50		0.5	

iv intravenously, po per os, TBI total body irradiation.

Validation Transplant Conditioning Intensity Score(TCI) RI 1.0 low NRM intermediate 0.9 high 0.5 low 0.8 intermediate 0.4 0.7 Cumulative incidence of relapse Cumulative incidence of NRM 0.6 0.3 p=0.001 0.5 p=0.001 0.2 0.4 0.3 0.1 0.2 0.1 0.0

https://qxmd.com/calculate/calculator_871/transplant-conditioning-intensity-tci-score

.

0.0

0

1934

1948

178

6

1201

1272

111

12

Time from transplant (months)

number of at-risk patients

923

993

86

18

595

664

66

24

443

505

47

0

1934

1948

178

6

1201

1272

111

12

Time from transplant (months)

number of at-risk patients

923

993

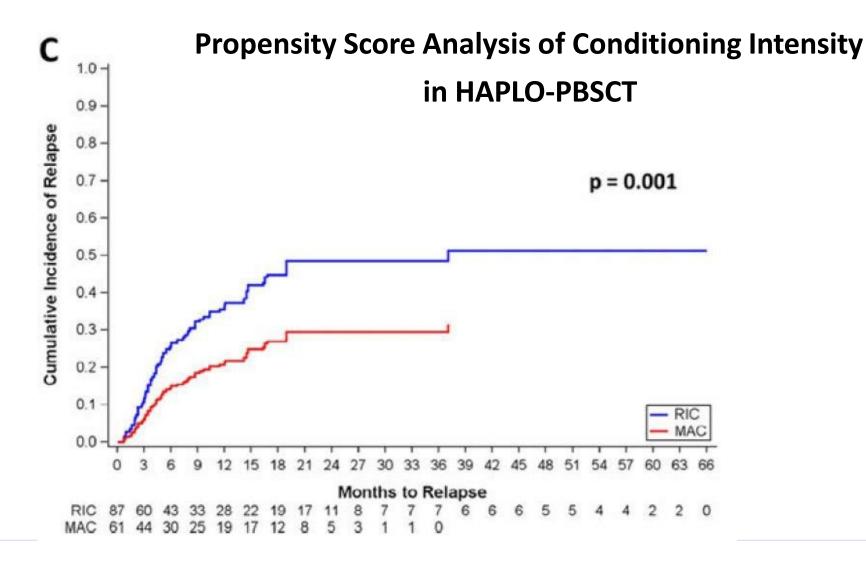
86

18

595

664

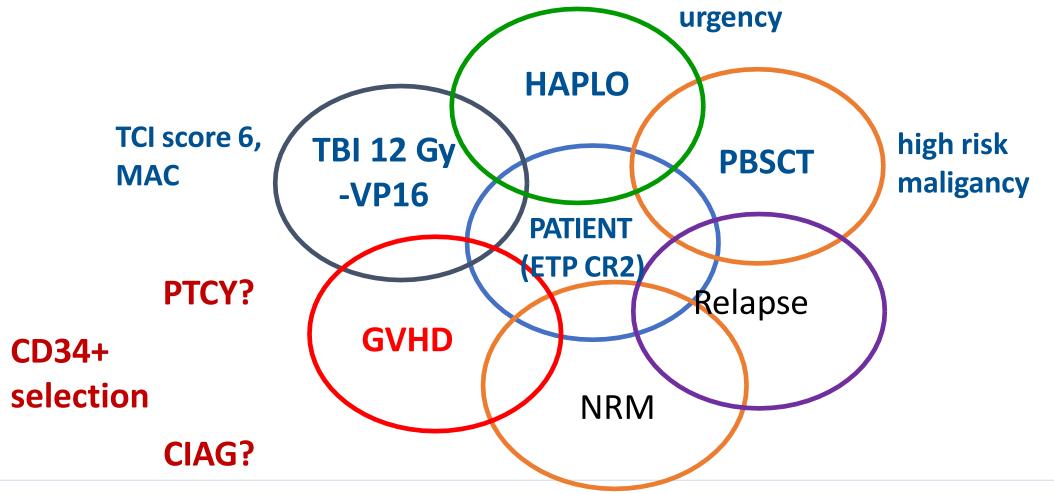
66


24

443

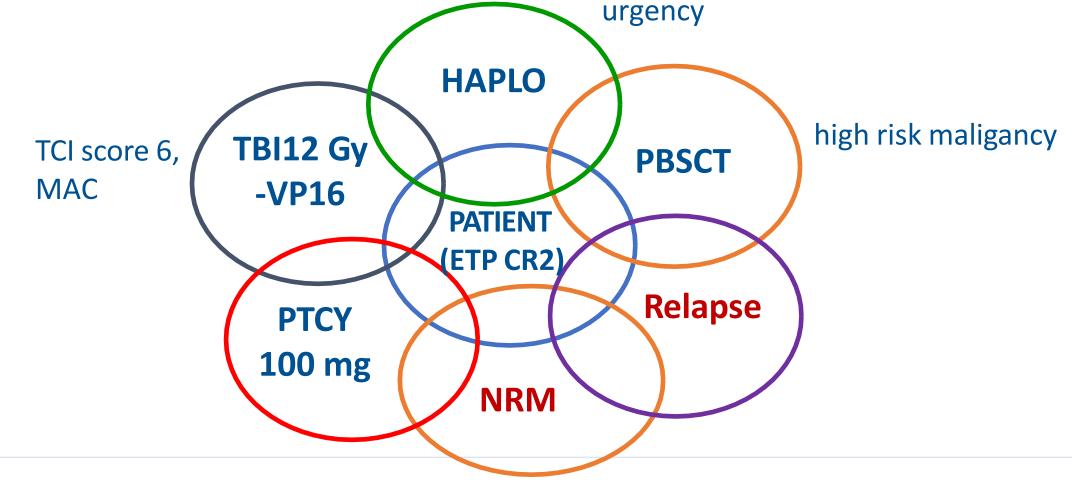
505

47


DISCUSSION: Conditioning intensity does matter also in Haplo

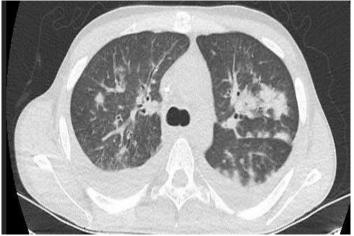
HEMATOLOG

QUESTION: Which GVHD Prophylaxis?



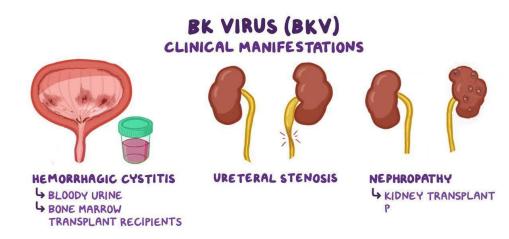
DISCUSSION: PTCY is the winner

QUESTION: What specific side effects of PTCY do you expect?



CLINICAL: CRS, Severe haemorrhagic cystitis (HC)

- Haplo-PBSCT, TBI 12 Gy-VP16, PTCY 50mg/kg d+4, d+5, start CsA/MMF d0
- D+2 non-infectious fever 39 C (CRS grade I) -> antipyretics, antibiotics, resolved d+6
- MESNA (2-mercaptoethanesulfonate), prophylactic continuous bladder irrigation (CBI)
- Start d+25 Hemorrhagic Cystitis, BKV-DNA urine > 5x10⁹ copies/ml, Hematocyst
- MMF discontinued d+26
- D+48 pneumonia


CONSECUTION

Vose JM, Reed EC, Pippert GC, et al. Mesna compared with continuous bladder irrigation as uroprotection during high-dose chemotherapy and transplantation: a randomized trial. J Clin Oncol. 1993;11:1306–1310.

Discussion: Treating HC is a challenge

Table 3 Clinical grading of haemorrhagic cystitis

Grade	Severity	
I	Microscopic haematuria	
II	Macroscopic haematuria	
III	II + presence of blood clots	
IV	III + renal impairment due to urinary obstruction	

Bladder irrigation (washout of blood)

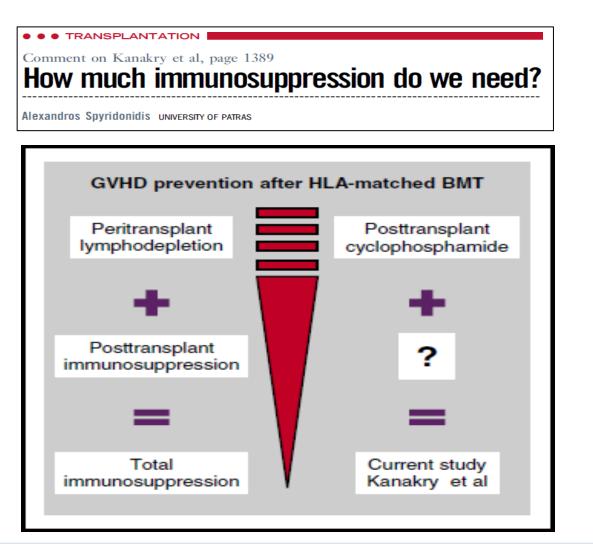
Endoscopically removal of clots/ Cystectomy

□OFTEN CHECK FOR OBSTRUCTION DUE TO URETERETIS (failure of peristaltic)→ Nephrostomies

□Cidofovir (cytosine analog that inhibits viral DNA synthesis) → intravesical, intravenous)

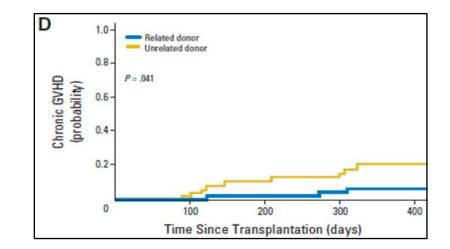
BK specific T cells

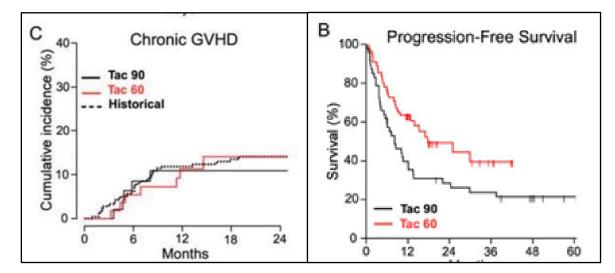
□Immunosuppression reduction



CLINICAL: HAEMORHAGIC CYSTITIS

- 5 × surgery
- Cidofovir i.vesical, i.venous
- D+50 reduce calcineurin inhibitor (CNI)

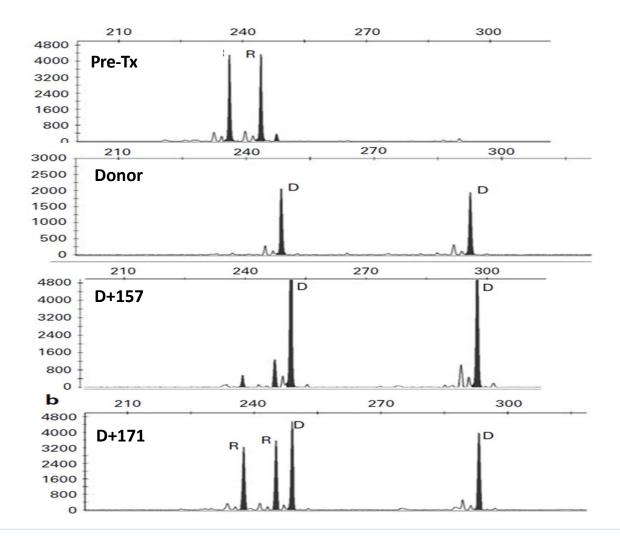

QUESTION: When can we stop post-grafting CNI after PTCY?


DISCUSSION: Immunosuppression (IMS) after PTCY can be

- **stopped early** PTCY-Matched SCT (MRD/MUD)
- BMT: no post-grafting IMS
- PBSCT: IMS needed, can be stopped before d+90

PTCy-Haplo BMT: stopping IMS day +60 is feasible

PTCY- Haplo PBSCT: stop at day +90(?)

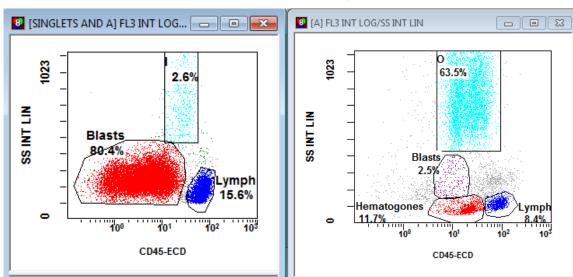


CLINICAL: STOP CNI

- D+25 HC
- 5x surgery, pneumonia (CPAP)
- Cidofovir i.vesical, i.venous
- D+50 reduce CNI
- D+70 stop CNI
- D+ 112 exit from BMT Unit
- CR (FACS), Complete Chimerism

CLINICAL: conversion to increasing mixed chimerism

DISCUSSION: How I treat MRD after allo-HCT?

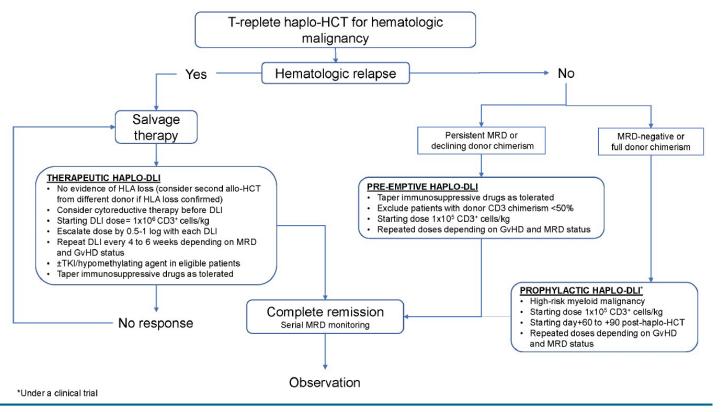


How I treat measurable (minimal) residual disease in acute leukemia after allogeneic hematopoietic

cell transplantation

Alexandros Spyridonidis Department of Internal Medicine, Bone Marrow Transplantation Unit, University Hospital of Patras, Patras, Greece

MRD monitoring	Confounding variables after allo-HCT				
Donor chimerism	Residual host signals, loss of heterozygosity in the HLA locus				
FC	Regenerating hematogones				
Leukemia-specific markers	Clearance depends on GVL dynamics, high clonal evolution rate				
DNMT3	Donor-derived clonal hematopoiesis				
lg/TCR	Comparable sequences in regenerating T and B cells				
WT1	Overexpression in regenerating marrow				



Clinical applications of donor lymphocyte infusion from an HLA-haploidentical donor: consensus recommendations from the Acute Leukemia Working Party of the EBMT

Series showing that Haplo DLI can induce sustained remissions

Figure 1. Proposed treatment algorithm of therapeutic, pre-emptive and prophylactic donor-lymphocyte infusion (DLI) following T-cell replete haploidentical hematopoietic cell transplantation (HCT). HLA: human leukocyte antigen; MRD: minimal residual disease; GvHD: graft-versus-host disease; TKI: tyrosine kinase

CLINICAL: chronic GVHD

- D+175 Haplo DLI 3 \times 10⁵ T cells/ kg bw
- D+210 Haplo DLI 5 × 10^5 T cells/ kg bw
- Conversion to CC
- Moderate/ severe skin-liver GvHD
- ALT 161 IU/L, AST 157 IU/L, gGT 1431 IU/L, ALP 470 IU/L
- CYA \rightarrow Ruxolitinib for 13 months

CLINICAL: current status

- D+3.5 years
- WBC: 4 × 10⁹/l, Hb 123 g/l, PLT: 120 × 10⁹/l
- CR, CC
- No active GVHD
- No IMS
- good performance, at work

QUESTION: Was the bad Haemorrhagic Cystitis and DLI the lifesaver?

- High risk disease \rightarrow
- HC \rightarrow
- Early cessation of IMS \rightarrow
- Haplo- DLI for MC
- cGVHD
- NO RELAPSE!!

