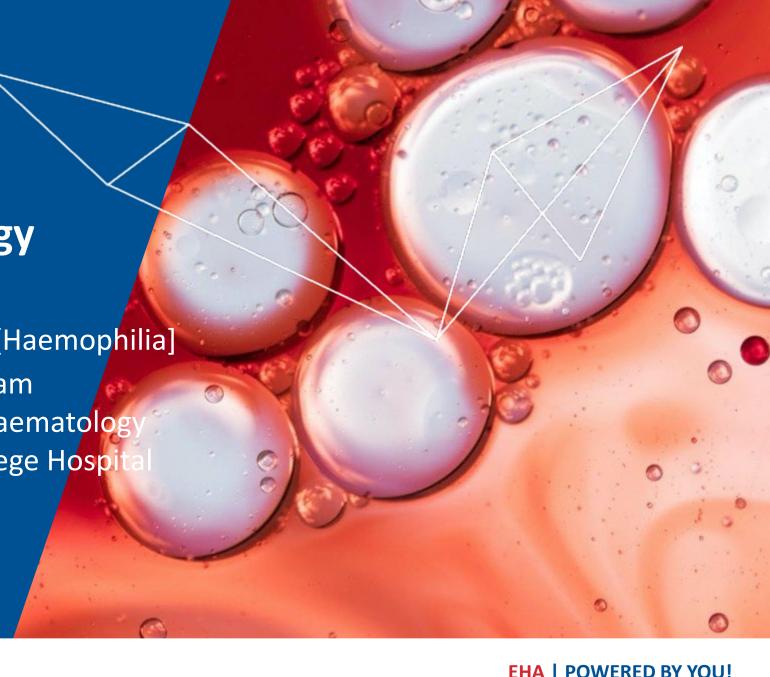


EHA-ISHBT Hematology Tutorial

Self-assessment Case – Session [Haemophilia]


Speaker: Dr Seetharam Anandram

Associate Professor Haematology

St John's Medical College Hospi

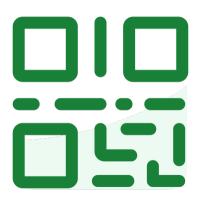
Bengaluru

Hyderabad, India March 1-3, 2024

Disclosures

None

Introduction


- A 40-year-old woman first presented in childhood with recurrent epsitaxis. At initial presentation
- FBC : Normal
- Blood Film: Normal
- PT/APTT: Normal
- Sister had a similar history
- No history of consanguinity

Questions can be answered by scanning the QR on your phone to access Slido.

For each question you have 15 seconds.

Join at slido.com #3561738

Q1) Which of these inherited bleeding disorders is most likely?

- 1. Factor XIII deficiency
- 2. Fibrinogen deficiency
- 3. Bernard Soulier
- 4. Glanzmann Thrombasthenia
- 5. Wiskott-Aldrich Syndrome

4.41 Which of these inherited bleeding disorders is most likely?

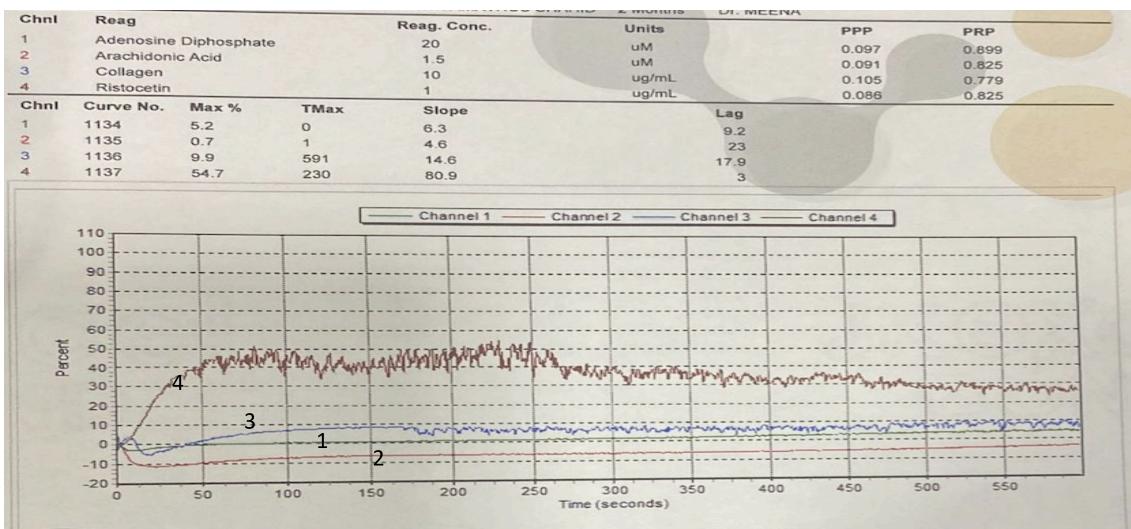
Q2) What test will you do to confirm the diagnosis

- 1. PFA-100
- 2. Light Transmission aggregometry
- 3. Flow cytometry
- 4. Genetic testing
- 5. 2,3 & 4

4.42 What test will you do to confirm the diagnosis?

Flow Cytometry

Q-3 What does the flow cytometry show?


- 1. Absence of CD41 and 61
- 2. Normal
- 3. Absence of CD42
- 4. Absence of CD42 & CD 61
- 5. Absence of CD 61

4.43 What does the flow cytometry show?

Light Transmission Aggregometry

Q4) What does the Light Transmission Aggregometry show?

- 1. No aggregation to Ristocetin
- 2. Aggregation to Ristocetin
- 3. Aggregation to ADP, Arachidonic Acid & Collagen
- First wave aggregation with ADP, Arachidonic acid, collagen & partial agglutination with Ristocetin
- 5. Aggregation to Collagen

4.44 What does the Light Transmission Aggregometry show?

She now presents with massive GI bleed with Haemoglobin of 30g/L

- Requiring 2-3 units of PRBC per day
- Endoscopy and colonoscopy is normal
- CT- Angiogram is normal
- Capsule endoscopy shows jejunal ulcers and diffuse mucosal bleed in jejunum
- Gastro-enterologists advise resection of involved jejunum
- Patient agrees for the surgery

Q5- How will you manage the surgery

- 1. Recombinant factor VIIa (NovoSeven)
- 2. HLA-matched platelets and recombinant factors VIIa
- 3. FEIBA
- 4. Desmopressin
- 5. Recombinant factor VIIa or FEIBA

4.45 How will you manage the surgery

Surgical Plan

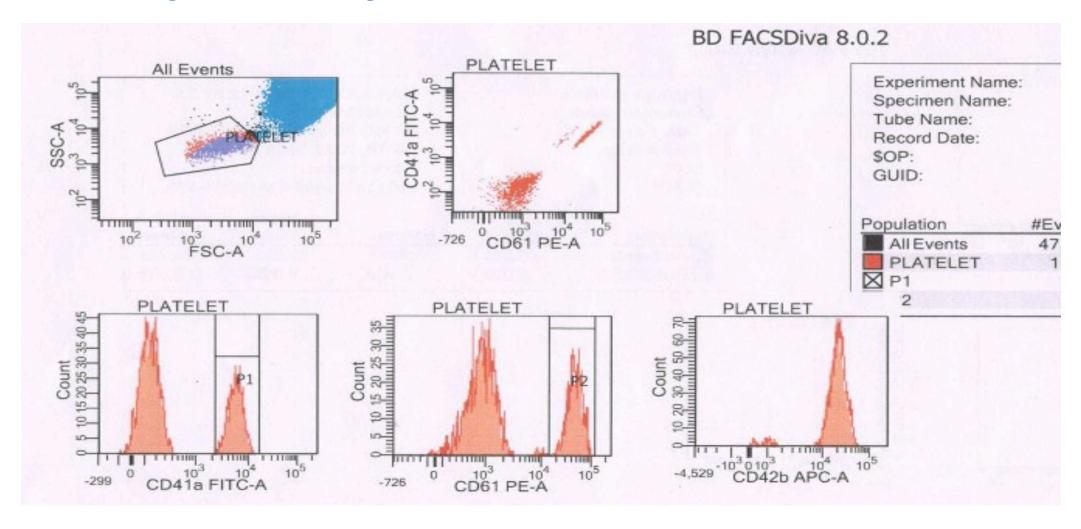
- On admission: CBC, U&E, LFT, Coagulation Screen, Group & Save
- 1g IV Tranexamic acid at induction and continue TDS orally/IV for 10 days
- Transfuse 3 units of HLA matched platelets prior to surgery
- Administer Novoseven 90mcg/kg IV bolus, 30 minutes prior to surgery & continue with Novoseven 90mcg/kg IV every 2 hours for the first 48 hours post op
- Transfuse 1 unit of HLA matched platelet on completion of surgery in recovery
- After 48 hours depending on the clinical condition, may be able to reduce the frequency to every 4 hours for further 5 days

Hospital Course

- Patient was given Recombinant Factor VIIa and Cross-matched SDP
- Has uneventful surgery
- Unfortunately, during the surgery was found to have cirrhosis of liver
- Post-op Day 14- she develops jejunal perforation and undergoes emergency laparotomy and Gastro-jejunostomy
- Post-op Day 21- she develops bile leak and undergoes another laparotomy
 & feeding jejunostomy
- Patients cannot afford any more factors
- What would you do?
- How do you monitor haemostasis?

Q-6 How can you monitor haemostasis

- 1. TEG or ROTEM
- 2. Flowcytometry
- 3. Clinically
- 4. Global haemostatic Assay + Flowcytometry
- 5. All of the above

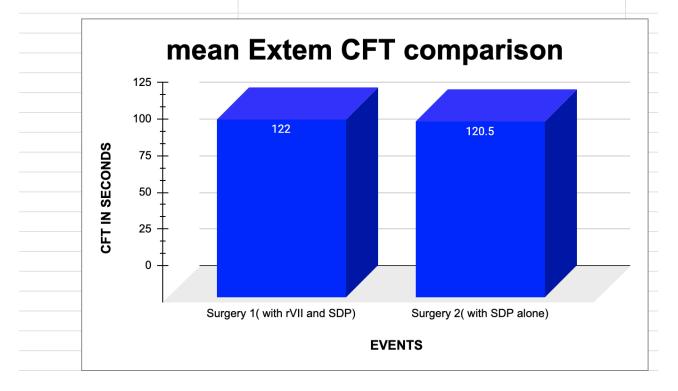

4.46 How can you monitor haemostasis?

What did we do?

- Literature search
- Decided to proceed with cross-matched platelets after careful discussion with family and surgeons
- Used ROTEM and flow cytometry to guide haemostasis during surgery

Flowcytometry

ROTEM

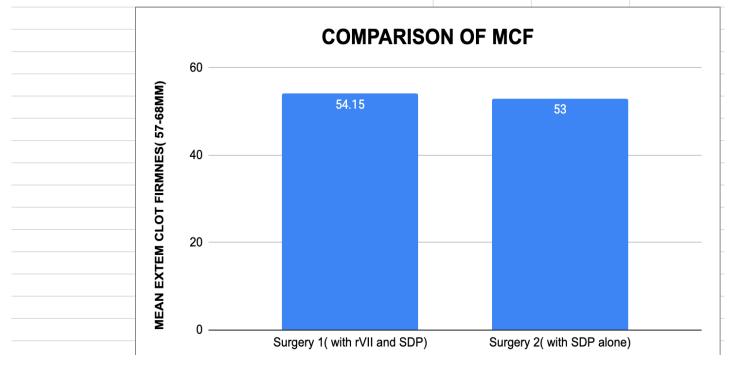

Interpretation of Results obtained from the ROTEM $^{\!(\!R\!)}$ and TEG $^{\!(\!R\!)}$ Devices

Device		
TEG®	ROTEM®	Indicative of
Prolonged R Time	Prolonged Clotting Time [CT]	Factor deficiency Factor dysfunction Presence of anticoagulants Severe Hypofibrinogenaemia Severe thrombocytopenia
Prolonged K Time	Prolonged Clot Formation Time [CFT]	Factor deficiency Thrombocytopenia Platelet dysfunction Hypofibrinogenaemia
Decreased α angle	Decreased α angle	Thrombocytopenia Platelet dysfunction Hypofibrinogenaemia
Decreased Maximal Amplitude [MA]	Decreased Maximal Clot Firmness [MCF]	Thrombocytopenia Platelet dysfunction Hypofibrinogenaemia
Increased in EPL or LYS30/LYS60	CLF	Primary fibrinolysis Secondary fibrinolysis

ROTEM

EVENTS	MEAN EXTEM CLOT FORMATION TIME IN SECONDS(N: 40-85s)	
Surgery 1(with rVII and SDP)	122	
Surgery 2(with SDP alone)	120.5	

NovoSeven + SDP- 122 S


SDP - 120.5 S

Mean Clot formation time was similar

ROTEM

NovoSeven + SDP- 54.15S

SDP - 53S

Mean Clot firmness time was similar

Discussion

- Glanzmann is a rare autosomal recessive bleeding disorder
- Deficient in fibrinogen receptor GpIIb/IIIa causing defect in platelet aggregation
- Incidence is ~ 1 /1,000,000
- Usually present with muco-cutaneous bleeding
- Managing bleeding is a challenge especially in resource constraint settings
- Combination of assays can be used to monitor haemostasis during surgery

Discussion

- Tranexamic acid is used in mild bleeds
- Severe bleed will need HLA matched platelets and Novo Seven
- ROTEM and Flowcytometry could be used to titrate Novo Seven dosing
- Our experience shows major surgery can be done using only Cross matched platelets with aid of ROTEM and Flowcytometry

References

- Gomez, Keith, et al. "Clinical and laboratory diagnosis of heritable platelet disorders in adults and children: a British Society for Haematology Guideline." *British journal of haematology* 195.1 (2021): 46-72.
- Ganapule A, Jain P, Abubacker FN, Korula A, Abraham A, Mammen J, George B, Mathews V, Srivastava A, Viswabandya A. Surgical procedures in patients with Glanzmann's thrombasthenia: case series and literature review. Blood Coagul Fibrinolysis. 2017 Mar;28(2):171-175.
- Practical Haemostasis
- UpToDate

