De-escalation of chemotherapy for children and young persons with ALL

Ajay Vora Great Ormond Street Hospital London

Improvements in overall survival for successive UK childhood ALL trials

BJH 2020

UKALL 2003 treatment regimens

Dex 6 mg/m²

UKALL 2003 treatment regimens

Dex 6 mg/m²

De-escalation – Why?

Over-treatment

Mortality, morbidity and QOL Burden of care

Overtreatment UKALL X (1982 – 86)

Chessells et al, Lancet. 1995;345:143-148

Figure 4: Comparison of disease-free survival in four randomised treatment arms

Schore, R.J., Angiolillo, A.L., Kairalla, J.A. *et al.* Correction: Outstanding outcomes with two low intensity regimens in children with low-risk B-ALL: a report from COG AALL0932. *Leukemia* **37**, 1406 (2023).

Death Due to disease is now similar to TRM

NOPHO ALL-2008 patients vs 92- and 2000-, 1-15 years at Dx

Death from disease has decreased over time – TRM has changed little

ALL is (nowadays) an unusual diagnosis in paediatric oncology: death from disease ≈ death from therapy ≈ 4%

Patients \geq 15-45 years \approx 20%

Patients \geq 15-45 years \approx 8%

UKALL 2003 Serious Adverse Events

Risk Group	All patients (%)	Il patients Reg A Reg B Reg C (%) (%) (%) (%)		p-value (Reg C vs A/B)	
Any infection	307 (13.3)	134 (11.1)	98 (17.5)	75 (14.0)	0.63
Fungal infection	81 (3.5)	25 (2.1)	35 (6.2)	21 (3.9)	0.58
Encephalopathy (excluding seizure)	164 (7.1)	43 (3.6)	58 (10.4)	63 (11.7)	<0.0001
Asparaginase Hypersensitivity	47 (2.0)	4 (0.3)	3 (0.5)	40 (7.4)	<0.0001
Pancreatitis	33 (1.4)	9 (0.7)	8 (1.4)	16 (3.0)	0.0006
Osteonecrosis	88 (3.8)	9 (0.7)	52 (9.3)	27 (5.0)	0.097
Thrombosis	51 (2.2)	20 (1.7)	15 (2.7)	16 (3.0)	0.17
CNS Thrombosis	31 (1.3)	12 (1.0)	10 (1.8)	9 (1.67)	0.45
Number in risk groups	2300	1203	560	537	

UKALL 2003 QOL

De-escalation:How?

Better risk stratification

New agents

End-point Overall survival >EFS

The ALLTogether Consortium

More than 1400 patients per year from 14 countries

Age 1-45 (1-24 in the UK)

ALLTogether Risk Stratification

Copy number alteration (CNA) classifier Integrating CNA + cytogenetics

CNA profile defines risk groups

CNA profiles defined by MLPA P335 kit

10

Moorman et al (2014) Blood 124:1434

Risk group	% patien ts	EFS%	OS%	RR%	% of relaps es	% of all events
VLR	21.9	95	99	3.7	10	10
IR-L	36.2	94	98	2.8	12.5	20
IR-H	38.9	82	89	15	72	64
VHR	3.0	78	78	14	5	6

Drugs Active in Lymphoid Malignancies

- Aminopterin (Methotrexate)1948
- Cortisone 1952
- Mercaptopurine 1953
- Cyclophosphamide 1959
- Vincristine 1963
- Asparaginase 1967
- Daunorubicin 1968
- Cytarabine 1968
- Etoposide/Teniposide 1970

New agents

TKIs

Targeted chemotherapy - Inotuzumab Immune therapy – Blinatumomab, CART Potential: Daratumumab, JAK/STAT/Menin inhibitors

Blinatumomab- A bispecific T Cell-Engaging BiTE Antibody

Half-life < 2 hours

Licence indications

- Relapse (Ph-neg)
- Primary refractory/resistant disease MRD ≥ 0.1% (Ph pos and neg)

Guidelines for Blinatumomab in Upfront Acute Lymphoblastic Leukaemia

Authors: Sujith Samarasinghe, Lamia Samin, Caroline Osborne, Danny Cheng, John Moppett and Ajay Vora

Serious toxicity during induction/consolidation which in a clinical significant manner precludes timely delivery of further chemotherapy or requires a global reduction in chemotherapy dosage. Alternatively consider in patients who are at high risk of chemotherapy toxicity due to co-morbidities.

Hodder et al JCO 2023

Blinatumomab for chemotherapy intolerance or resistance

Chemotherapy group: 85 patients		HSCT	
		patients	
Indication	Detail		
Severe toxicity (n=53)	18 sepsis (6=G3, 12=G4), the majority (n=11) of whom required intensive care 13 invasive fungal infection (6=G3, 7=G4), including CNS (n=2), pulmonary mucormycosis (n=1) and biopsy proven disseminated aspergillus (n=4)	Indication Refractory	Detail
	7 severe pancreatitis (5=G3, 2=G4), associated with typhlitis (n=4).	post- consolidati	
	7 severe typhlitis (3=G3, 4=G4) requiring ileostomy (n=2) or TPN (n=2)	on (n=17)	6 MRD >5%,
	3 Grade 3/4 encephalopathy)		
	2 G3 CNS thrombosis		4 MRD 1-5%
	2 G4 Liver failure requiring intensive care		
	1 G4 CNS haemorrhage		7 MRD 0.05-1%
Comorbidities (n=16)	8 Down Syndrome	Refractory	
	2 Li-Fraumeni 6 others* (Bloom syndrome, Overgrowth syndrome with PIK3CA mutation,	induction (n=2)	1 Ph+ ALL and 1 Ph-like ALL with MRD>5%
	Rett syndrome, Schimke immuno-osseous dysplasia, 7q11.21-23 duplication, 11q duplication)	Pre- existing	Immunodeficiency syndrome (Omenn
EOC MRD>0.05% (n=10)	Not suitable for HSCT due to poor patient performance status, co-morbidities or lack of suitable donor	condition (n=1)	syndrome) requiring further HSCT ²⁸
Persistent MRD + HR cyto (n=5)	2 PH+		
	2 KMT2A		
	1 Near haploid		
lehovah's witness (n=1)	Refused blood products		

FIG 1. CONSORT diagram: patients started Blina at the end of induction, mid-consolidation, or the end of consolidation and as bridge to HSCT or continuing chemotherapy. Blina, blinatumomab; Blin-CT, blinatumomab chemotherapy; CART, chimeric antigen receptor T-cell therapy; CMR, complete molecular remission; DI, delayed intensification; HSCT, hematopoietic stem-cell transplant.

Figure 2 – Event-free (A) and overall (B) survival of Blin-CT matched cohort compared to UKALL 2003 controls

Table 3 – Outcome of patients with an indication for HSCT by intervention

Hodder et al JCO 2023

	HSCT	Chemotherapy
Number of patients	20	12 (EOC MRD >0.05%)
	5 (3 died due to TRM, 2	
Events	relapsed of whom 1 died)	0
Median follow up	26 months	26 months

HSCT = haematopoietic stem cell transplant; EOC= end of consolidation; TRM = treatment related mortality.

Randomise Blinatumomab vs Delayed Intensification

ALL patients to Get 1 Blina Consolidation Cycle

*SR/IR low (2/3 of patients) - 1 Blina Cycles Randomise 1 x 2 Cycles *IR High Risk (1/3 of patients) -3 Blina Cycles Randomise 1 x 4 Cycles

ECOG ARCIN: 4 Cycles of Blina potentially better than 1-2

Luger et al ASH Abstracts 2023

2877 Assessment of Outcomes of Consolidation Therapy By Number of Cycles of Blinatumomab Received in Newly Diagnosed Measurable Residual Disease Negative Patients with B-Lineage Acute Lymphoblastic Leukemia: In the ECOG-ACRIN E1910 Randomized Phase III National Clinical Trials Network Trial

UK Relapse Strategy

- High risk defined as all very early/early relapses and/or high risk cytogenetics.
- Standard risk defined as all late relapses without high risk cytogenetics.
- Early CART was available if failed reinduction (disease >25%) or if they were HR without a suitable donor.

UK Reduced Intensity Induction compared to COG AALL1331: Reduced Intensity Induction leads to Reduced TRM and improved MRD responses

Strict Definition ie. Death within first 28 days

• COG 16 (2.4%) vs. UK 0, p=0.09

Wider Definition ie. Death within 2 weeks of completing induction

• COG 21 (3.1%) vs. UK 0, p=0.035

Significantly more UK patients were MRD negative after Blina Course 2:

• 88 vs. 69%, p<0.0001

COG plan to adopt reduced intensity induction prior to blina in relapsed HR ALL (Dave Teachey comms)

Superior UK Results compared to Matched COG AALL1331 VE/Early Relapses- Early introduction of Blina Beneficial

Strata 🕂 COG 🕂 UK

Infant

ORIGINAL GROUPS

YEARS FROM DX

in red, Interfant06 curves

N. pt	s. (%)	6-year	EFS (SE)	6-year Survival (SE)		
Int99	Int06	Int99	Int06	Int99	Int06	
388	447	48.0 (2.6)	49.4 (2.5)	55.5 (2.6)	62.1 (2.4)	
81%	69 %	p=	0.73	p=0	.20	

Blinatumomab for infant acute lymphoblastic leukemia

Solood[®] 23 APRIL 2020 | VOLUME 135, NUMBER 17 1501

¹Great Ormond Street Hospital for Children, London, United Kingdom

Patient/disease characte	eristics	Blinatumomab treatments								Outcomes		
Age at blinatumomab administration, y/sex	Disease status	Pre-CNS status	Pre- MRD, %	Lymphocyte count pre- blinatumomab (×10°/ mL)	Cycles, n	CRS	Neurotoxicity	Post- MRD, %	HSCT conditioning	Donor source	Status	
0.75/M	CR2	CNS 1	0.1	0.94	1	No	No	< 0.005	FBT	MUD	CR	
0.75/F	CR2	CNS 3	0.6	0.22	1	No	No	< 0.005	FTT	MSD	CR	
0.5/M	CR2	CNS 1	1	0.55	1	Grade 1	No	< 0.005	FTT + ATG	MMUD	CR	
0.41/F	CR2	CNS 1	1	N/A	1	No	No	< 0.005	FTT	MSD	Relapse→died*	
0.5/M	Primary refractory	CNS 1	9	0.28	1	No	No	0.06	FTT + ATG	MUD	CR	
0.5/M	CR2	CNS 1	0.3	0.35	1	No	No	0.05	N/A		Relapse→CR†	
0.5/F	CR1	CNS 1	0.06	0.41	1	Grade 2	Yes	< 0.005	FTT + ATG	MMSD	CR	
0.2/F	CR1	CNS 1	0.06	2.43	1	No	No	< 0.005	FTT	MSD	Relapse‡	
0.2/M	First relapse	CNS 3	40	N/A	1	Grade 1	No	< 0.005	FTT + ATG	MUD	Died§	
2.9/M	CR2	CNS 1	0.01	0.95	2	No	No	<0.005¶	CY/TBI/Alem	MSD	CR	
0.2/F	Primary refractory	CNS 1	9	N/A	2	No	No	<0.005¶	FTT/ATG	MUD	Relapse→CR	

Blinatumomab Added to Chemotherapy in Infant Lymphoblastic Leukemia

N Engl J Med 2023;388:1572-81.

No. at Risk (censored)

Current study	30 (0)	27 (0)	16 (9)	5 (20)	1 (24)	0 (25)	0 (25)	0 (25)
Interfant-06	214 (0)	129 (2)	91 (16)	77 (26)	59 (39)	44 (53)	32 (65)	20 (76)

Conclusion

Blinatumomab is effective as replacement for intensive chemotherapy in chemo-intolerant, resistant and relapse patients

Test as replacement in all BCP-ALL patients Aim for chemotherapy-free treatment in 5-10 years

Acknowledgements

Clinicians:

Sujith Samarasinghe Sara Ghorashian Persis Amrolia Waseem Qasim

Statisticians:

Sue Richards Rachel Wade Amy Kirkwood

Patients and families

Scientists:

Lynne Lennard Anthony Moorman Christine Harrison Jerry Hancock MRD network lab staff

CART UK experience - Autologous

Persis Amrolia

Stringent EFS Infant Maintenance

Sara Ghorashian

Stringent EFS: Failure to respond, Relapse, Loss of BCA requiring intervention, Recurrent MRD, Second cancer, Death Ghorashian et al In Press

Intention to treat

Infused

Maintenance for early loss of B cell aplasia

Survival probability

Tisagenlecleucel for infant ALL – equivalent EFS and no excess of lineage switch relapse

Stringent survival

Probability of B cell aplasia

- 2 additional cases of MRD emergence
 - 1 CD19neg, 1 CD19 pos, both went onto further therapy

Ghorashian et al. Lancet Haematology 2022

Base-edited CD7 CART cells to target T cell cancers

Waseem Qasim

Open Phase 1 study of base-edited CD7 CART for paediatric T-ALL

NEJM 2023

Cytopenia (Patient 3)

Time from BE-CAR7

CD33 allo-CAR

- Base edited
- Bridge to transplant
- Flu/Cy/Campath LD
- First patient CRS with HLH, in flow negative CR at one month
- Plan is to combine with CD7/123 CAR