

EMA-MSH Hematology Tutorial on Hodgkin Lymphoma

April 17-18, 2024 | Kuala Lumpur, Malaysia

PET-CT Imaging; cornerstone in Hodgkin lymphoma treatment

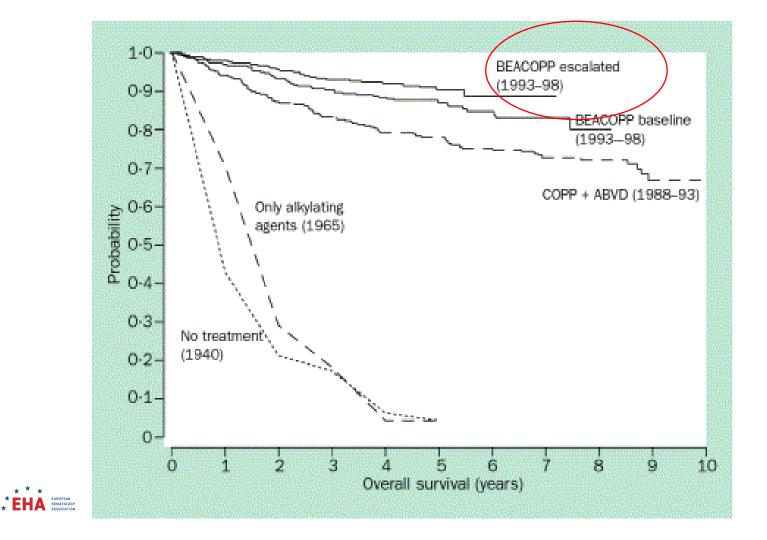
Josée M Zijlstra (Amsterdam; the Netherlands)

Disclosure of Interest Statement

- 1) I or one of my co-authors hold a position as an employee, consultant, assessor or advisor for a pharmaceutical, device or biotechnology company. If yes, please specify name/position/company:
 No
- 2) I or one of my co-authors receive support from a pharmaceutical, device or biotechnology company. If yes, please specify name/position/company/which project and whether support is in kind or monetary:

Yes, Roche, Gilead, Karyopharm, BMS; in kind support

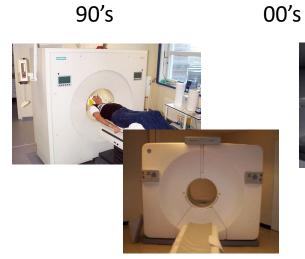
• 3) I or one of my co-authors hold property rights/patents for (radio)pharmaceuticals, medical devices or medical consulting firms. If yes, please specify name/position/company:


No

 4) I or one of my co-authors have written articles for (radio)pharmaceutical, medical device, biotechnology or consulting companies during the last 5 years. If yes, please specify name/position/company/article/ journal and coauthors:

No

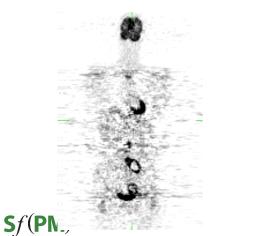
Treatment of Hodgkin lymphoma is very successful, but..

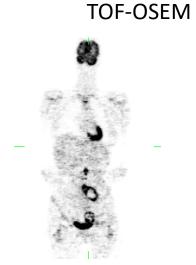

Overall Survival advanced stage Hodgkin lymfoom ~90% !

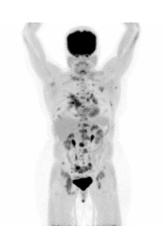
- Can it become even better?
- And with less toxicity and better quality of live afterwards?
- More personalized treatment ; PET-CT guided?!

PET/CT technology over time – large steps

70's




2000's-10's



FBP OSEM

2020's

TOF-PSF-OSEM

FDG PET/CT in the management of Hodgkin lymphoma patients

FDG PET/CT plays a crucial role in

- staging
- restaging
- response assessment during treatment
- biopsy guidance

> PET/CT has become a cornerstone of patient care.

But how reliable is PET/CT for response assessment?

- Sensitivity is very high but residual disease less than 0.5 cm can be missed
- Specificity is not so very good; not every PET-positive abnormality is always residual Hodgkin lymphoma
 - So need for biopsy to confirm residual disease when possible

¹⁸F-FDG PET/CT-scanning in Hodgkin lymphoma

• Scans should be reported using visual assessment

- Images scaled to a fixed SUV & colour table
- noting location of foci in nodal & extranodal sites
- distinguished from physiological uptake & other patterns of disease according to distribution and/or CT characteristics

Timing of PET-CT scans

At end of treatment

- 6-8 wks post chemotherapy ideally
 minimum ≥3 wks
- ≥ 3 months after radiotherapy

During therapy ("interim-PET") at day just before next cycle

Hodgkin lymfoom stadium I-II

Early stage without risk factors: 2-3x ABVD plus 20 Gy IS RT

Early stage with risk factors

- 4 cycles of ABVD plus 30 Gy IS-RT
 - or HD17 schema:

 2x BEACOPPesc plus 2x ABVD; when PET negative; no Radiotherapy ! 5yrs PFS 95.1 % vs 97.3% met RT

TABLE 1 Favourable prognosi	s stage I–II Hodgkin lymphoma
EORTC	GHSG
No large mediastinal adenopathy	No large mediastinal adenopathy
ESR <50 without B symptoms	ESR <50 without B symptoms
ESR <30 with B symptoms	ESR <30 with B symptoms
Age ≤50	No extranodal disease
1–3 lymph node sites involved	1–2 lymph node sites involved

Abbreviations: EORTC, European Organisation for the Research and Treatment of Cancer; ESR, erythrocyte sedimentation rate; GHSG, German Hodgkin Study Group.

TABLE 2 Unfavourable prognosis stage I–II Hodgkin lymphoma	
EORTC	GHSG
Presence of one or more of the following:	Presence of one or more of the following:
Large mediastinal adenopathy	Large mediastinal adenopathy
ESR \geq 50 without B symptoms	ESR ≥50 without B symptoms
ESR \geq 30 with B symptoms	ESR \geq 30 with B symptoms
Age >50	Extranodal disease
≥4 lymph node sites involved	≥3 lymph node sites involved

The GHSG considers stage IIB patients who have either large mediastinal adenopathy or extranodal disease as advanced stage and would not recommend treatment with early-stage unfavourable protocols.

Abbreviations: EORTC, European Organisation for the Research and Treatment of Cancer; ESR, erythrocyte sedimentation rate; GHSG, German Hodgkin Study Group.

Interim-PET is reflecting chemo-sensitivity

Treatment of intermediate stage Hodgkin lymfoom: interim-PET guided

Starting with ABVD: PET2 + -> escalation to 4 cycles of BEACOPPesc
 PET2 - -> de-escalation to 2 cycles of AVD plus 30 Gy

GHSG- HD 17 treatment scheme

- 2 cycles of BEACOPPesc plus 2 cycles op ABVD: **PET4** -> no radiotherapy
- Late effects of radiotherapy are serious; try to ommit mediastinal RT!

Interim-PET is reflecting chemo-sensitivity

Treatment of advanced Hodgkin lymfoom: interim-PET 2 guided

Starting with ABVD: PET2 + -> escalation to 4 cycles of BEACOPPesc
 PET2 - de-escalation to 4 cycles of AVD (cf RATHL)

• Starting with BEACOPPesc: PET2 - -> de-escalation to 4 cycles instead of 6 cycles

Visual assessment of FDG-PET-CT

Definition of positive versus negative FDG-PET-CT?

FDG-uptake of involved lymph nodes related to mediatinal blood pool and liver uptake !

5 Point Scale (Deauville criteria)

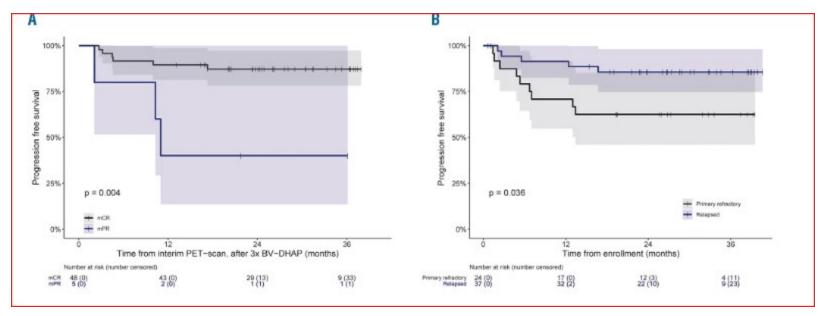
DS 1.	no uptake in sites involved at baseline	
DS 2.	uptake \leq bloodpool in sites involved at baseline	
DS 3.	bloodpool < uptake \leq liver ¹ in sites involved at baseline	
DS 4.	moderately increased vs. liver in sites involved at baseline	
DS 5.	55. markedly ² increased vs. liver <i>in sites involved at baseline</i> and/or new lesions estimated to represent lymphoma (!)	

DSX³ new uptake unlikely to be related to lymphoma

* EHA EUROPEAN HENATOLOGY ASSOCIATION Sf(PM)

Interpretation of FDG PET-CT end of treatment

"Use visual assessment, with PET-CT images scaled to fixed SUV display and color table"


• Deauville scores 1 -3: Complete Metabolic Response (CMR)

Deauville score 4 of 5: Partial Metabolic Response (PMR) or Stable disease
 → = treatment failure!

Barrington JCO 2014

Goal for treatment in 1st and 2nd line ?

• Aiming for Complete Metabolic Remission (=DS1-3: PET-negative) !

Transplant BraVe combining BV-DHAP before ASCT; Kersten MJ_ Haematologica 2021

Deauville visual scoring versus quantification

Hodgkin lymphoma

Sf(PM)

* * * * EHA EUROPEAN HENATOLOGY ASSOCIATION

Interim-PET 2

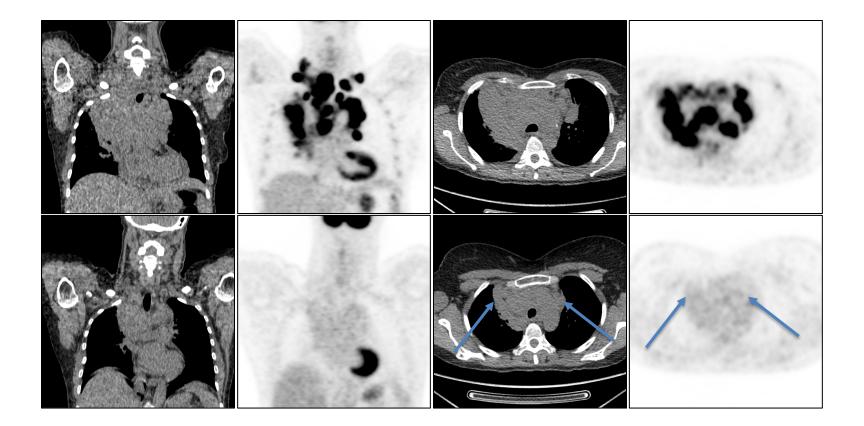
SUV max LN4.1SUV max liver4.0

Deauville 4

SUVbw Gemiddelde: 1,4 Max.: 4,1 HU Gemiddelde: -390 Max.: 263 ø 40,3 mm

* EHA EUROPEAN HEMATOLOGY

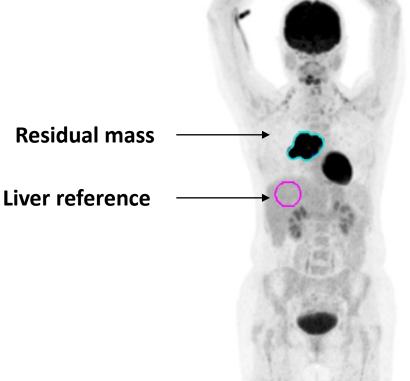
Sf(PM)


SUVbw Gemiddelde: 2,7 Max.: 4,0 HU Gemiddelde: 48 Max.: 344 Ø 43,2 mm SUVbw Gemiddelde: 1,5 Max.: 3,3 HU Gemiddelde: -375 Max.: 160 ø 32,1 mm

> SUVbw Gemiddelde: 2,7 Max.: 3,4 HU Gemiddelde: 47 Max.: 312 ø 45,2 mm

SUV max LN 3.3 SUV max liver 3.5

Deauville 3


When 'interim' imaging is required, PET-CT is recommended as the best imaging modality to assess early response

EHA EUBOPEAN MINATOLOGY ASSOCIATION Sf(PM)

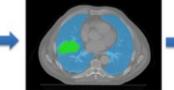
Semiquantitative or visual assessment?

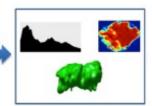
 Semi-quantitative assessment is required to confirm the visual impression of uptake for response assessment using the Deauville Criteria (DC) (type1).

Semiquantitative or visual assessment?

- Semi-quantitative assessment takes account of reference background
- Less user dependent and can be semi-automated
- Normalisation to reference reduces variability between centres
- Semi-quantitative assessment for D4 and D5 in Lugano 2014
- Allows for development of continuous scales with potential to refine optimal thresholds

What is Radiomics?


Human eye, subjective



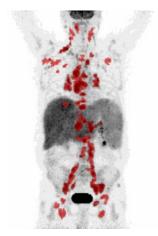
Automated, more sensitive, quantitative

Imaging

Segmentation

Feature extraction

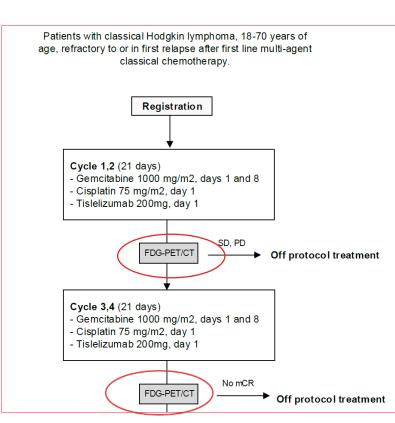
"Radiomics is the future of diagnostic imaging!"



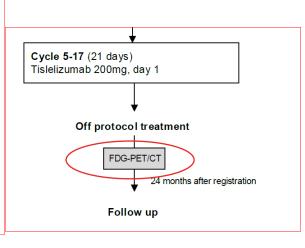
*Lambin P et al. Eur J Cancer. 2012; Aerts HJ et al. Nat Commun. 2014; Leijenaar et al. Acta Oncol 2018

Radiomics

- Radiomics is a proces to analyse PET-Images in digital data
- Introduction of quantitative evaluation of (baseline) PET/CT images provided new functional indices such as metabolic tumor volume (MTV)
- Radiomics analysis has allowed the extraction of a wide variety of quantitative data that reflect **biological characteristics of disease** providing additional promising prognostic biomarkers in lymphomas.
- Use of Artificial Intelligence to analyse PET-data and predict outcome !



New trials in HL using check point inhibitors


Version 2.0, 22 MAR 2023

<u>Ti</u>slelizumab plus <u>Ge</u>mcitabine and Cisplatin for <u>R</u>elapsed or <u>R</u>efractory <u>H</u>odgkin <u>L</u>ymphoma followed by Tislelizumab Consolidation in Patients in Metabolic Complete Remission (TIGERR-HL). An open label phase II trial.

HOVON 164 HL

Humanized, immunoglobulin G4 (IgG4)-variant Binding to extracelluar domain of human PD-1

Phase-II single arm Prim objective: 2yrsPFS

N=75 pts

- Omitting ASCT
- Outpatient treatment

Duration 12 mo

Checkpoint toxicity and efficay ?

Personalized medicine

Each patient PET-CT guided treatment!

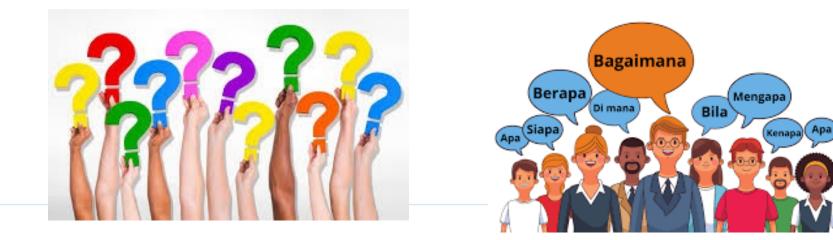
> No over-treatment (toxicity) and no undertreatment (risk for relapse)

- PET-CT assessment nowadays visual but will become quantitative
- Development of ct-DNA and TARC monitoring (liquid biopsies)

Navigating increasingly individualised Hodgkin lymphoma treatments to optimally balance risks and benefits

Paul J. Bröckelmann^{1,2,3,4} Peter Borchmann^{1,2}

Br J Haematol 2022;


Commentary on Guideline for the first-line management of Classical Hodgkin Lymphoma – A British Society for Haematology guideline. Br J Haematol. 2022;197:558-572.

shutterstock.com · 2177064579

