

SESSION TITLE

How I treat PTCL NOS patients

June 29, 2024

LECTURE TITLETreatment of PTCL NOS patients

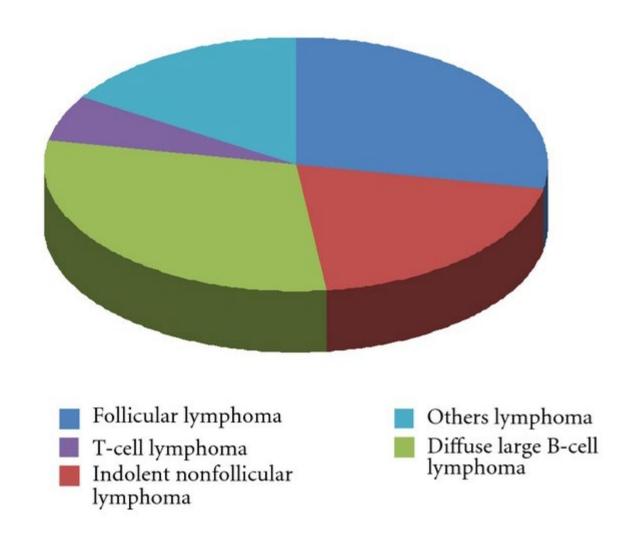
Elif Birtas Atesoglu

Yeditepe University, Department of Hematology

Istanbul, Turkey

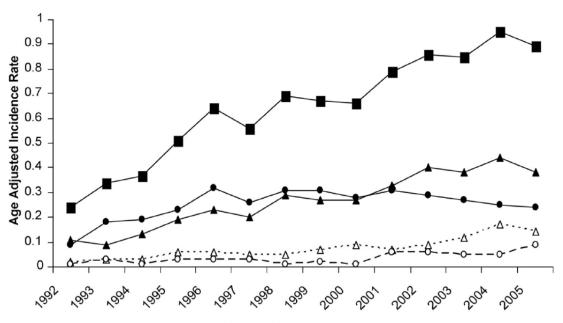
June 29, 2024

DISCLOSURE


- Abbvie, Janssen, Takeda (Advisory board)
- Abbvie, Janssen, Takeda, Astra Zeneca (Honoraria)

PERIPHERAL T CELL LYMPHOMA

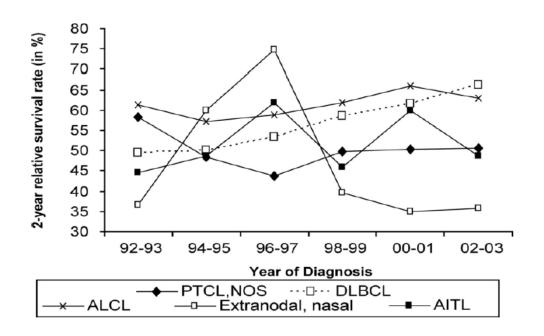
- Peripheral T-cell lymphomas (PTCL) are mature T- and NK-cell lymphomas.
- More than 30 different PTCL subtypes.
- A diverse group of diseases with variable clinical presentations.
- In Western populations PTCL represent 10% of all NHLs.

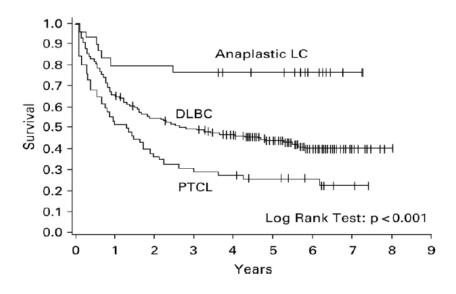


NODAL PTCL-represent about 60% of all PTCL in Western populations

WHO-HAEM4R	ICC 2022	WHO-HAEM5
Anaplastic large cell lymphoma, ALK-positive	Anaplastic large cell lymphoma, ALK-positive	ALK-positive anaplastic large cell lymphoma
Anaplastic large cell lymphoma, ALK-negative	Anaplastic large cell lymphoma, ALK-negative	ALK-negative anaplastic large cell lymphoma
Nodal lymphomas of T follicular helper origin	Follicular helper T-cell lymphoma	Nodal T-follicular helper (TFH) cell lymphoma
Angioimmunoblastic T-cell lymphoma	Follicular helper T-cell lymphoma, angio- immunoblastic type (angioimmunoblastic T-cell lymphoma)	Nodal TFH cell lymphoma, angioimmunoblastic type
Follicular T-cell lymphoma	Follicular helper T-cell lymphoma, follicular type	Nodal TFH cell lymphoma, follicular type
Nodal peripheral T-cell lymphoma with T follicular helper phenotype	Follicular helper T-cell lymphoma, NOS	Nodal TFH cell lymphoma, NOS
Not listed as an entity, subtype of peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS)	Primary nodal EBV+ T-cell/NK-cell lymphoma	EBV+ nodal T- and NK-cell lymphoma
Peripheral T-cell lymphoma, NOS	Peripheral T-cell lymphoma, NOS	Peripheral T-cell lymphoma, NOS

Year of Diagnosis

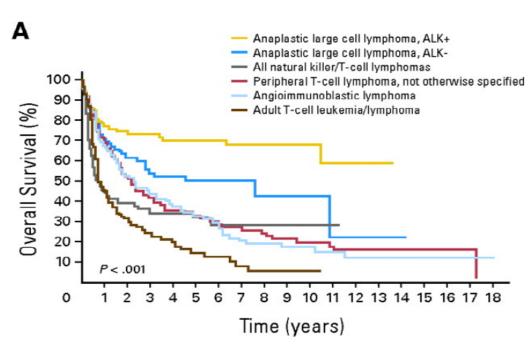

——Peripheral T cell lymphoma, combined
···Δ··· AITL
———PTCL, NOS

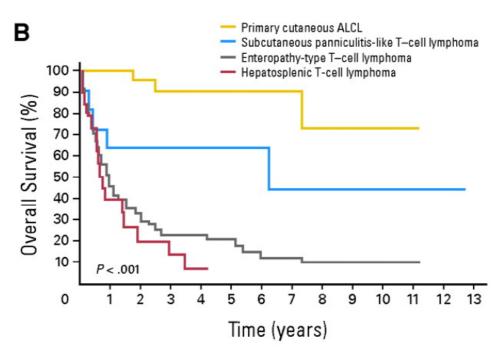

– – – Extranodal, nasal
———ALCL

Abouyabis AN, et al. Leuk Lymphoma. 2008 Nov;49(11):2099-107

Study	Study	Sample	Geographic		Global subtypes		Epide	miology (p	ercent of	PTCLs in re	gion)			Median	Gender	Gender References	
	era and design	size	regions	cation	distribution (per PTCLs globally)		U.S	Sweden	N.A	Europe	Asia	S.A	Australia/ India	age			
T-cell	2018-	N=648	N.A./	WHO	PTCL-NOS	31.3	NR	NR	25.4		NR	31.9	32.3	NR	NR	Federico et al.	
Project	2021		Europe	(2016)	AITL	13.5			20.6			11.0	16.2			Hematological	
2.0—	Prospec-		S.A		ALCL, ALK+	8.8			15.9			8.5	6.6			Oncology 2021	
Interim	tive		Australia/		ALCL, ALK-	18.9			11.1			17.9	24.0			[7•]	
results			India		ENKTL	11.6			12.7			11.5	11.4				
					ATLL	9.9			3.2			14.3	3.0				
					EATL	1.2			1.6			1.6	0				
					MEITL	0.3			1.6			0.3	0				
					HSTCL	1.7			0			1.4	3.0				

OVERALL SURVIVAL OF PTCL COMPARED TO DLBCL





OVERALL SURVIVAL BY T-CELL LYMPHOMA TYPE

Common types

Uncommon types

PTCL-NOS; Pathology

- Defined as a diagnosis of exclusion for those cases of PTCL lacking specific features that qualify for other specific PTCL subtypes.
- PTCL, NOS is morphologically heterogeneous
- Mostly; predominantly medium-sized or large cells with irregular nuclei and prominent nucleoli.
- Less commonly; a predominance of atypical small cells with irregular nuclei.
- Tumors with a predominance of large cells have a worse outcome.
- Lennert Lymphoma:
- ✓ Prominent infiltrate of epithelioid histiocytes
- √ <10% of PTCL-NOS in historical series
 </p>
- ✓ Associated with better prognosis than other PTCL-NOS
- ✓ Recently, many cases of "Lennert lymphoma" in fact correspond to histiocyte-rich TFH lymphomas.

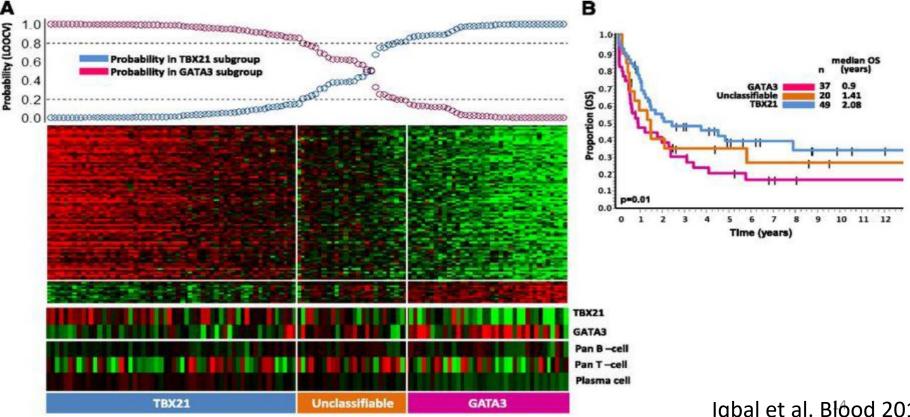
PTCL-NOS; Pathology

- Positive for pan-T cell antigens (CD3, CD2, CD5, CD7)
- However, one or several of these (most commonly CD5 or CD7) may show reduced or absent expression.
- CD4+ CD8-: most common
- CD4– CD8+: less frequent
- CD4- CD8- or CD4+ CD8+:uncommon
- > 85% express the $\alpha\beta$ TCR, and a minority $\gamma\delta$ TCR or TCR-silent
- CD4+ PTCL-NOS lack of TFH immunophenotype (PD1, ICOS, CXCL13, CD10 and BCL6) should be shown.
- CD30 expression is frequent (\sim 30%) and variable.
- In a study of 141 cases of PTCL-NOS; >20% had >50% CD30+ tumor cells.

CLINICAL FEATURES

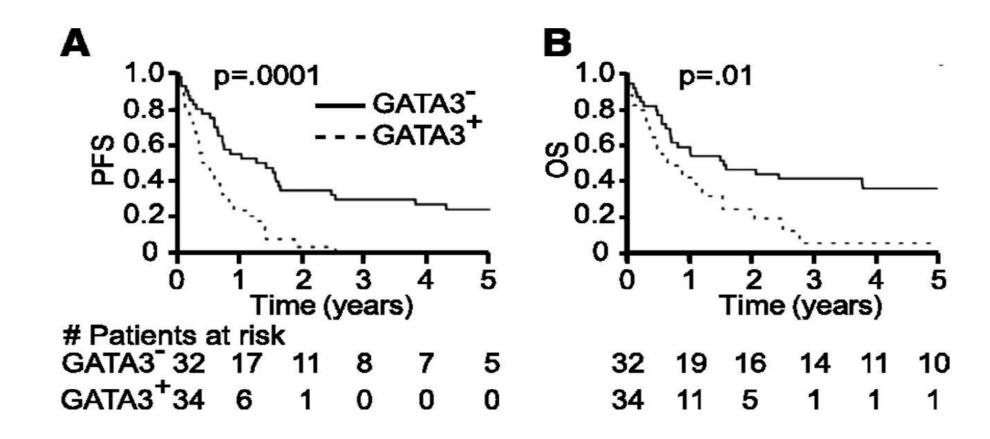
- The median age at diagnosis is 60 years
- M/F:2
- Frequent concurrent extranodal involvement, especially of the skin.
- Most patients have:
- ✓ Disseminated disease
- ✓ Constitutional symptoms
- ✓ Intermediate- to high-risk IPI score
- ✓ Sometimes blood eosinophilia.
- Small minority of patients may have a preceding lymphoproliferative variant of the hypereosinophilic syndrome or CLL

PROGNOSIS



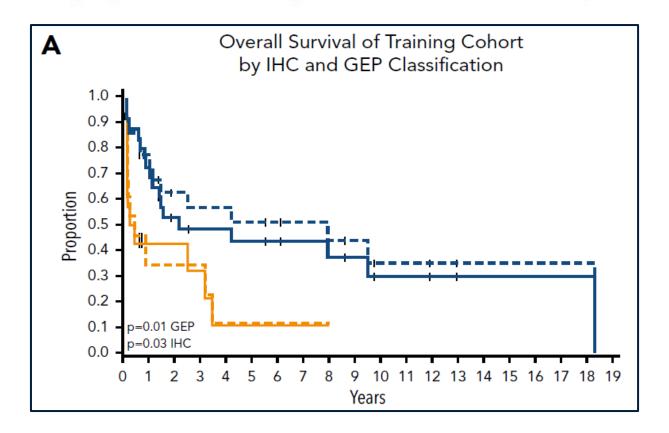
PTCL-NOS – Molecular Subgroups

GEP studies identified two main groups within PTCL-NOS:


1-PTCL-TBX21: characterized by expression of transcription factor T-box 21(TBX21), which is the regulator in TH1 and cytotoxic T-cell differentiation

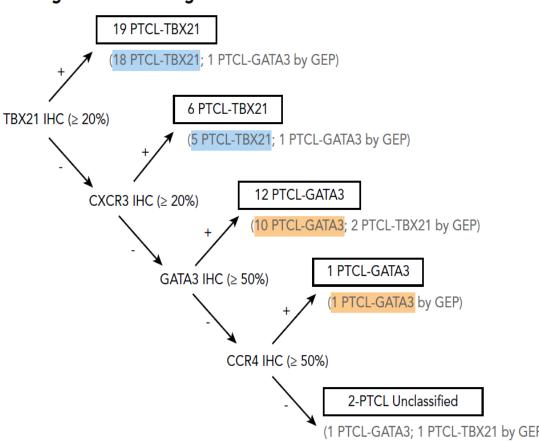
2-PTCL-GATA3: characterized by overexpression of GATA3, which is the transcriptional regulator in TH2 cell differentiation.

GATA-3 expression identifies a subset of PTCL-NOS with inferior survival


PTCL-NOS – Molecular Subgroups

Feature	TBX21	GATA3
Frequency	50-60% of PTCL, NOS	30-40% of PTCL, NOS
Defining signature	High expression of TBX21 and its target genes (CCL3, CXCR3, EOMES, IFNG, ILR2B)	High expression of GATA3 and its target genes (CCR4, CXCR7, IL18RA)
Morphology	Polymorphous	Medium-sized to large tumor cells Little environment
Immunohistochemistry	Cytotoxic subset TBX21+ and/or CXCR3+	TBX21 ⁻ and CXCR3 ⁻ GATA3 ⁺ and/or CCR4 ⁺
Pathways	Enrichment of the NF-κB pathway	High MYC and proliferation signatures
Genetics	Relatively lower genomic complexity, mutations in epigenetic modifiers frequent	Higher genomic complexity, recurrent <i>TP53</i> alterations, <i>CDKN2A</i> and <i>PTEN</i> deletions
Outcome	Better than GATA3 except for the subset of cytotoxic cases	Worse than TBX21

Reproducing the molecular subclassification of peripheral T-cell lymphoma–NOS by immunohistochemistry



Amador C et al. Blood 2019

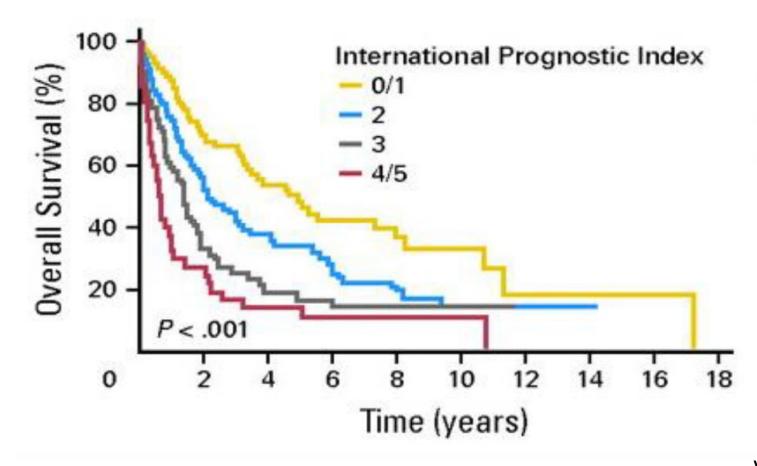
Α

IHC Algorithm in Training Cohort

В

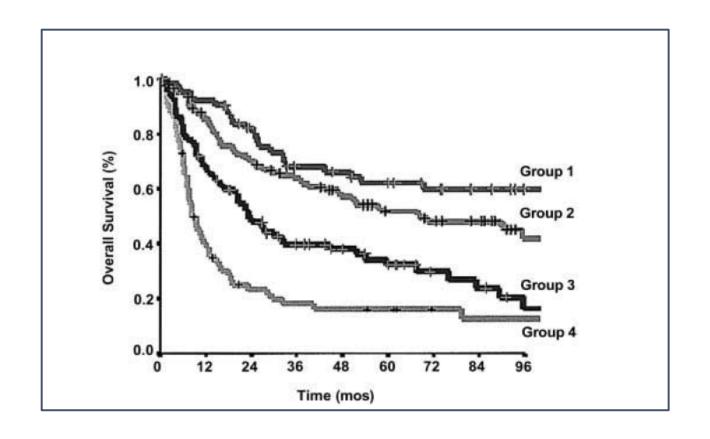
	PTCL-TBX21 by GEP (n=26)	PTCL-GATA3 by GEP (n=14)	Unclassified by GEP (n=9)
PTCL-TBX21 by IHC	23 (88%)	2 (14%)	6 (67%)
PTCL-GATA3 by IHC	2 (8%)	11 (79%)	2 (22%)
Unclassified by IHC	1 (4%)	1 (7%)	1 (11%)

Reproducing the molecular subclassification of peripheral T-cell lymphoma–NOS by immunohistochemistry


Table 2. Univariate and multivariate model of OS

	Univariate					Multivariate			
	n	HR	95% CI	P	n	HR	95% CI	P	
PTCL-GATA3 vs PTCL-TBX21 by IHC	128	2.39	1.55-3.70	<.0001	67	2.75	1.51-5.01	.0009	
Sex: male vs female	128	1.09	0.71-1.69	.69					
Morphology Monomorphous vs polymorphous CD8+ vs CD8- CD4+ vs CD4- CTX phenotype vs non-CTX phenotype	121 120 121 70	1.77 0.75 1.24 0.87	1.14-2.75 0.46-1.22 0.76-2.05 0.46-1.63	.0095 .24 .39 .65					
IPI factors High IPI vs low IPI Age: >60 y vs ≤60 y Stage: III/IV vs I/II High LDH vs normal LDH Extranodal sites: >1 vs ≤1	74 124 85 78 77	2.13 1.95 1.77 1.69 1.85	1.21-3.74 1.27-3.01 0.91-3.44 0.95-3.02 1.04-3.29	.0089 .0025 .092 .074 .035	67	1.8	1.0-3.24	.05	

IPI effectively stratifies patients with PTCL-NOS into risk groups



PIT (SPECIFIC FOR PTCL)

PROGNOSTIC INDEX FOR PTCL-U (PIT)^b RISK FACTORS: RISK GROUPS: • Age >60 years • Group 1 0 • Serum LDH > normal • Group 2 1 • ECOG Performance • Group 3 2 Status 2-4 • Bone marrow involvement • Group 4 3 or 4

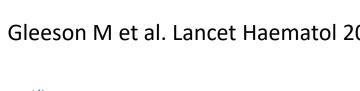
FIRSTLINE TREATMENT

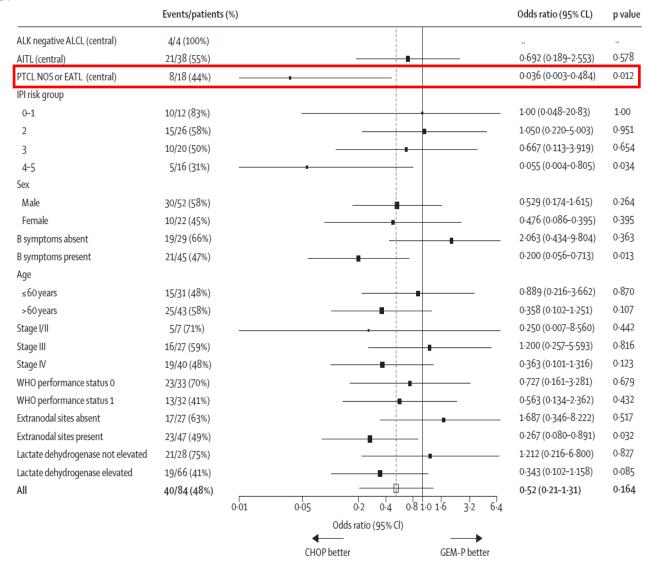
ANTHRACYCLINE-BASED CT

Table 1. Largest retrospective series including nodal peripheral T-cell lymphomas treated with primarily anthracycline-based chemotherapy.

First author Study	Period of PTCL diagnosis (age for enrollment)	Nodal PTCL subtypes	N	Received CHOP/CHOP- like therapy, %	5-year PFS %	5-year OS %
Vose ^{7a}		PTCL-NOS	340	80	20	32
International	1990-2002	AITL	243	82	18	32
Peripheral T-cell	(≥19 yrs)	ALK- ALCL	72	95	36	49
Lymphoma Project		ALK+ ALCL	87	88	60	70
		PTCL-NOS	256		21	28
Ellin ⁸	2000-2009	AITL	104	84 (All)b	20	32
Swedish Registry	(≥18 yrs)	ALK- ALCL	115	04 (All) ^s	38	31
		ALK+ ALCL	68		63	79
Brink ⁹		PTCL-NOS	692			32
Netherlands	1989-2018	AITL	294	NR ^c	NR	44
Cancer Registry	(18-65 yrs)	ALK- ALCL	89	IND	INFL	52
Cancer negistry		ALK+ ALCL	139			72

➤ Given their only recent recognition, primary nodal EBV₊T/NK-cell lymphoma and TFHL other than AITL, are combined in the PTCL-NOS subgroup




CHOP versus GEM-P in previously untreated patients with peripheral T-cell lymphoma (CHEMO-T): a phase 2, multicentre, randomised, open-label trial

CHOPX6 vs GEM-PX4 PTCL-NOS :26% vs 23%

	CHOP (six cycles; n=43)	GEM-P (four cycles; n=44)
Overall response	28 (75-7)	25 (67.6)
Complete response or unconfirmed complete response*	23 (62-2)	17 (45-9)
Partial response	5 (13.5)	8 (21.6)
Stable disease	2 (5.4)	3 (8.1)
Progressive disease	4 (10.8)	6 (16-2)
Progressive disease assessed clinically	3 (8.1)	3 (8.1)
Not done or not assessable	6	7

Gleeson M et al. Lancet Haematol 2018

+/- Anthracycline in induction treatment

- ☐ 39% PTCL,NOS
- **□** 20% AITL

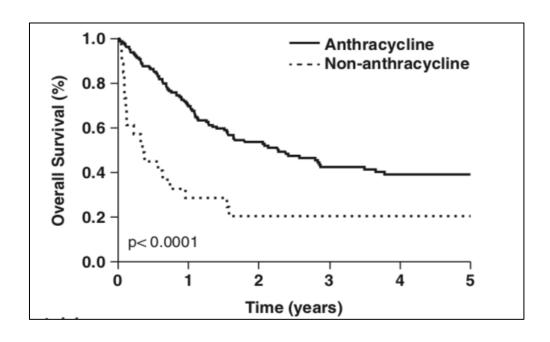
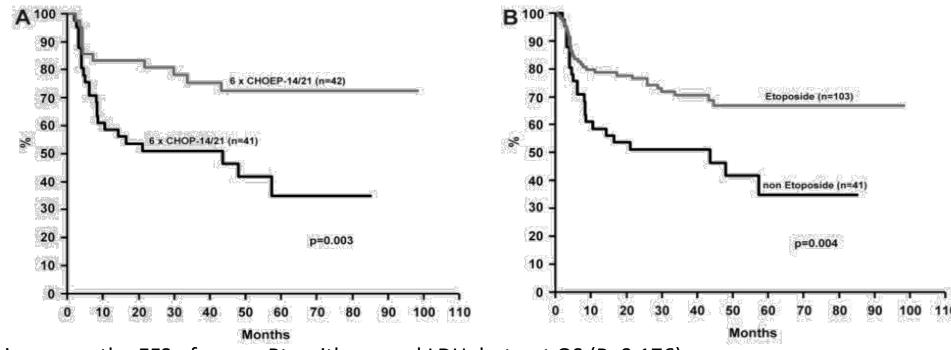


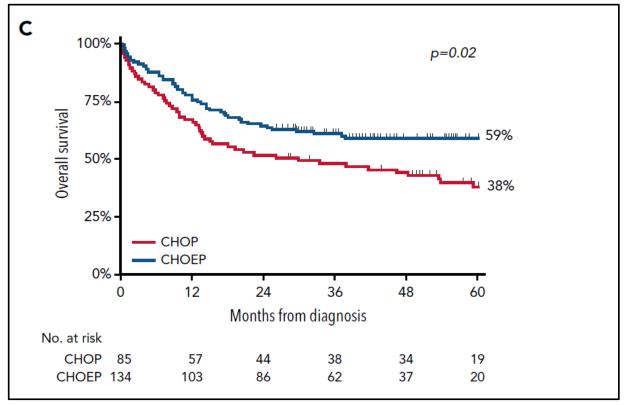
Table 4. Multivariate analysis for progression-free and overall survival Progression-free survival Overall survival HR (95% CI) P-value HR (95% CI) P-value All histologies IPI ≥3 2.5(1.8-3.5)< 0.0001 3.9(2.7-5.9)< 0.0001Nonanthracycline 2.2(1.4-3.3)0.001 2.9(1.9-4.4)< 0.0001PTCL-NOS/AITL histologies IPI ≥3 3.0(1.5-5.1)< 0.0001 4.5 (2.6-8.6) < 0.0001Nonanthracycline 1.8(1.0-3.1)0.04 2.9 (1.7-4.8) 0.0004

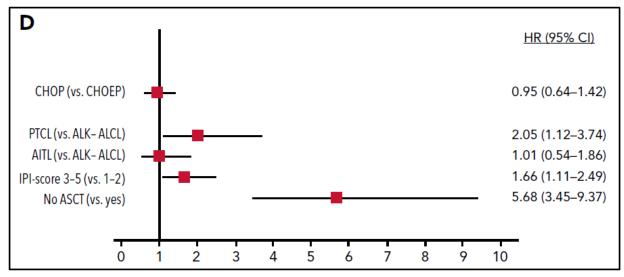


CHOP+X (ETOPOSIDE)

Norbert Schmitz,¹ Lorenz Trümper,² Marita Ziepert,³ Maike Nickelsen,¹ Anthony D. Ho,⁴ Bernd Metzner,⁵ Norma Peter,⁶ Markus Loeffler,³ Andreas Rosenwald,⁷ and Michael Pfreundschuh⁸

EFS of pts <60 years and with normal LDH




- ✓ CHOEP improves the EFS of young Pts with normal LDH, but not OS (P=0.176)
- ✓ In Pts >60 years the addition of etoposide (CHOEP) didn't yield any advantage, mainly due to added toxicities
- ✓ The significant benefit from etoposide was predominantly seen in the good prognosis ALK+ ALCL lymphoma group with a 3 year EFS of 57.1% with CHOP versus 91.2% with CHOEP (p= 0.012);

Impact of etoposide and ASCT on survival among patients aged <65 years with stage II to IV PTCL: a population-based cohort study

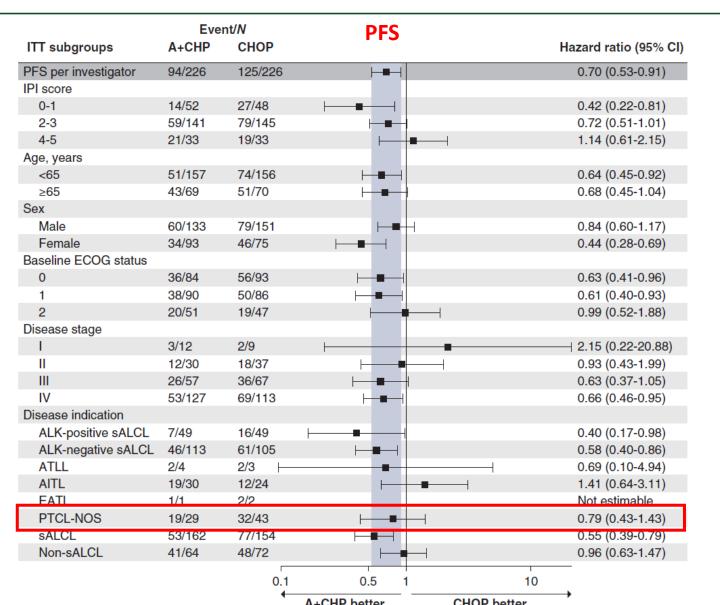
ALK- ALCL, AITL, PTCL-NOS

Dose-adjusted EPOCH chemotherapy for untreated peripheral T-cell lymphomas: a multicenter phase II trial of West-JHOG PTCL0707

- 41 PTCL pts
- 51% PTCL-NOS
- ORR:71,4% CR:47,6%
- Hematological toxicity frequent.
- Febrile neutropenia9%

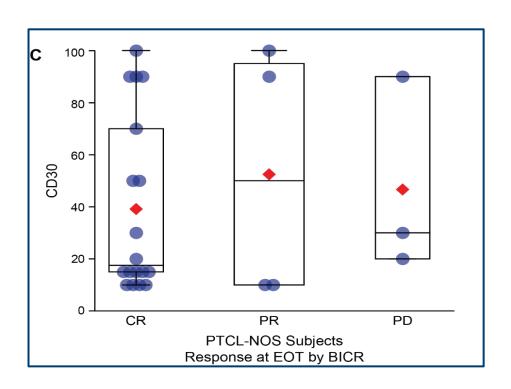
N (%)	% PFS at		%0S at		
	2 years	P	2 years	P	
21 (51.2)	47.1		61.9		
17 (41.5)	55.2		88.2		
2 (4.9)	100.0		50.0		
1 (2.4)	100.0	0.629	100.0	0.244	
	21 (51.2) 17 (41.5) 2 (4.9)	2 years 21 (51.2) 47.1 17 (41.5) 55.2 2 (4.9) 100.0	2 years P 21 (51.2) 47.1 17 (41.5) 55.2 2 (4.9) 100.0	2 years P 2 years 21 (51.2) 47.1 61.9 17 (41.5) 55.2 88.2 2 (4.9) 100.0 50.0	2 years P 2 years P 21 (51.2) 47.1 61.9 17 (41.5) 55.2 88.2 2 (4.9) 100.0 50.0

The ECHELON-2 Trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma

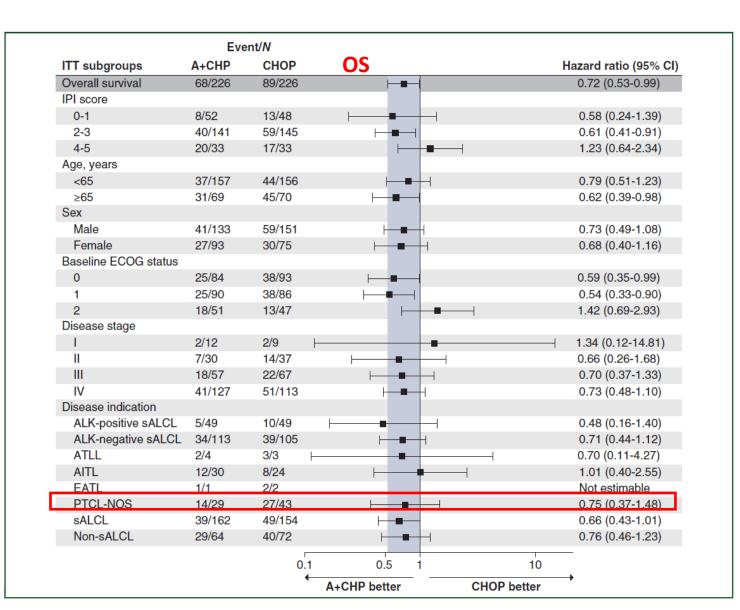


□CD30 + (≥10%) PTCL
□A+CHP vs CHOP
□226 vs 226
□PTCL-NOS: 13% vs 19%

Horwitz S et al. Ann Oncol 2022



The ECHELON-2 Trial: 5-year results of a randomized, phase III study of brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma



Horwitz S et al. Ann Oncol 2022

Romidepsin Plus CHOP Versus CHOP in Patients With Previously Untreated Peripheral T-Cell Lymphoma: Results of the Ro-CHOP Phase

CHOP+X (ROMIDEPSIN)

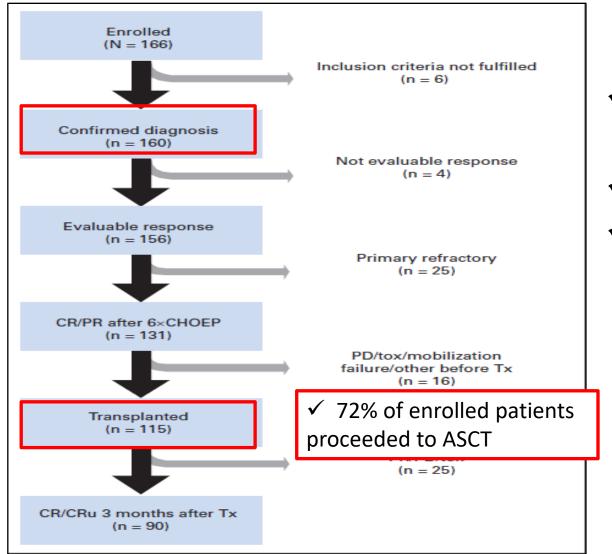
Parameter	Ro-CHOP (n = 211)	CHOP (n = 210)	Total (N = 421)
Median age, years (range)	65 (26-80)	65 (25-81)	65 (25-81)
Age group, years			
≤ 60	73 (34.6)	72 (34.3)	145 (34.4)
> 60	138 (65.4)	138 (65.7)	276 (65.6)
Sex			
Male	125 (59.2)	136 (64.8)	261 (62.0)
Female	86 (40.8)	74 (35.2)	160 (38.0)
Histologic diagnosis (local pathology)			
AITL	101 (47.9)	94 (44.8)	195 (46.3)
PTCL-NOS	59 (28.0)	68 (32.4)	127 (30.2)
ALCL ALK–negative type	21 (10.0)	21 (10.0)	42 (10.0)
Others	30 (14.2)	27 (12.9)	57 (13.5)

III Study (Conducted by LYSA)

	Ro-CHOP n/N	CHOP n/N	PFS	
Overall	122/211	129/210		
Baseline IPI				
< 2	12/36	19/43	•	•
≥ 2	110/175	110/167		
Age, years				
≤ 60	37/73	40/72		
> 60	85/138	89/138		
Nodal <i>v</i> extranodal				
Nodal	110/188	114/189		
Extranodal	12/23	15/21 -	•	
Histology				
PTCL-NOS	41/59	42/68		
AITL	53/101	57/94		
ALK-negative sALCL	13/21	9/21		//- 3.7
Others	15/30	21/27 —		
Sex				
Women	48/86	39/74		
Men	74/125	90/136		
PIT group > 2	39/60	30/43		
≤ 2	81/148	94/161		
		0.00	0.50 1.00 1	.50 2.00
		Favors Ro-CHOP	HR (95% CI)	Favors CHOP

- Alemtuzumab and CHOP-14 (or CHOEP-14) versus CHOP-14 (or CHOEP-14)
 - Phase III studies
 - 1-in younger pts (CHOEP-14, 18-65 years; ACT-1 trial) + Auto-SCT
 - 2-in older pts (CHOP-14, >65 years; ACT-2 trial)
 - ACT-2, 3-yr EFS: A-CHOP:27% vs CHOP:24% (p=0.248) and A-CHOP associated with significant toxicity
 - ACT-1, 3-yr EFS: A-CHOP 35% vs CHOP:26%

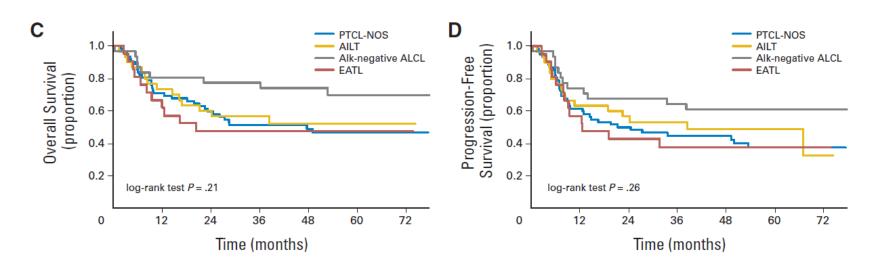
Role of consolidative Autologous transplant in front-line treatment of PTCL-NOS



VOLUME 30 · NUMBER 25 · SEPTEMBER 1 2012

JOURNAL OF CLINICAL ONCOLOGY

Francesco d'Amore, Thomas Relander, Grete F. Lauritzsen, Esa Jantunen, Hans Hagberg, Harald Anderson, Harald Holte, Anders Österborg, Mats Merup, Peter Brown, Outi Kuittinen, Martin Erlanson, Bjørn Østenstad, Unn-Merete Fagerli, Ole V. Gadeberg, Christer Sundström, Jan Delabie, Elisabeth Ralfkiaer, Martine Vornanen, and Helle E. Toldbod


- ✓ Biweekly CHOEP (CHOP for patients age >60)
- ✓ If CR or PR consolidation with ASCT
- ✓ Intention to Treat analysis

Up-Front Autologous Stem-Cell Transplantation in Peripheral T-Cell Lymphoma: NLG-T-01

Francesco d'Amore, Thomas Relander, Grete F. Lauritzsen, Esa Jantunen, Hans Hagberg, Harald Anderson, Harald Holte, Anders Österborg, Mats Merup, Peter Brown, Outi Kuittinen, Martin Erlanson, Bjørn Østenstad, Unn-Merete Fagerli, Ole V. Gadeberg, Christer Sundström, Jan Delabie, Elisabeth Ralfkiaer, Martine Vornanen, and Helle E. Toldbod

VOLUME 30 · NUMBER 25 · SEPTEMBER 1 2012

JOURNAL OF CLINICAL ONCOLOGY

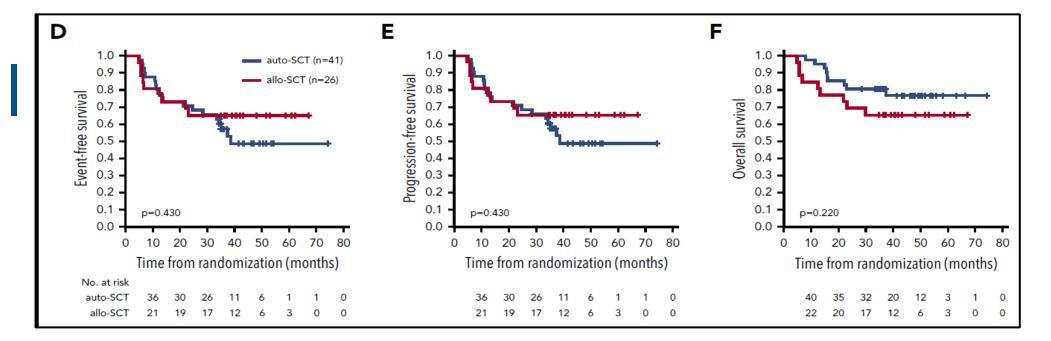
5 yr OS:51% 5 yr PFS:44%

	Histology	5-yr OS	95% CI
4	ALCL	70%	50%-83%
,	AILT	52%	33%-69%
	EATL	48%	26%-67%
	PTCL-NOS	47%	34%-59%
* [ASSOCIATION TO ASSOCIATION	y www.thd.e	ora tr

www.thd.org.tr

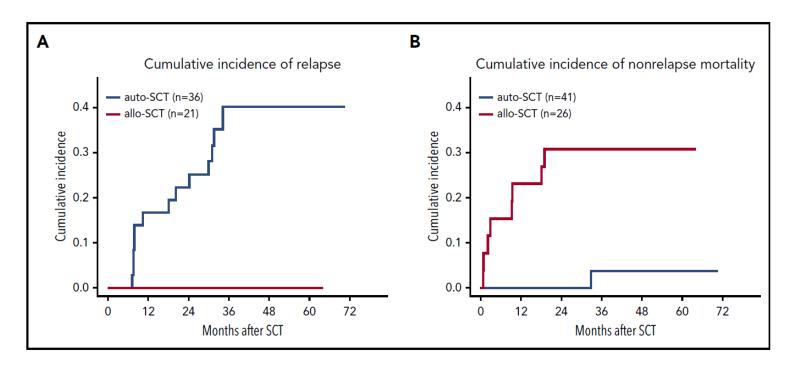
Meta-analysis CHOP 5y OS (Abouyaby, 2011)
56.5 %
36.5 %
21 %
34%

Histology	5-yr PFS	95% CI
ALCL	61%	42%-76%
AILT	49 %	30%-65%
EATL	38 %	18%-57%
PTCL-NOS	38 %	25%-50%


A randomized phase 3 trial of autologous vs allogeneic transplantation as part of first-line therapy in poor-risk peripheral T-NHL

- CHOEPX4+DHAPX1→
- AutoSCT vs AlloSCT
- Out of 103 pts:
- 41 AutoSCT, 26 AlloSCT
- MAC AlloSCT

	Randomized patients				Transplant recipients			
	Auto-SCT (n = 54)		Allo-SCT (n = 49)		Auto-SCT (n = 41*)		Allo-SCT (n = 26)	
Histology								
Reviewed	54†	(100)	46	(94)	41‡	(100)	25	(96)
Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS)	16	(30)	15	(33)	11	(27)	8	(32)
Angioimmunoblastic T-cell lymphoma	17	(33)	20	(43)	16	(40)	12	(48)
Anaplastic large cell lymphoma ALK- negative	9	(17)	5	(11)	8	(20)	3	(12)
Extranodal NK/T-cell lymphoma, nasal type	0	(O)	1	(2)	0	(0)	0	(0)
Enteropathy-associated T-cell lymphoma (EATL) types I and II	3	(6)	0	(0)	3	(8)	0	(0)
Hepatosplenic T-cell lymphoma	2	(4)	1	(2)	1	(2)	1	(4)
Subcutaneous panniculitis-like PTCL	1	(2)	0	(O)	0	(0)	0	(0)
Primary cutaneous γ/δ T-cell lymphoma	0	(0)	1	(2)	0	(O)	0	(0)
T-cell lymphoma, further specification not possible	1	(2)	1	(2)	1	(2)	1	(4)
Other entities	3§	(6)	2	(4)	0	(O)	0	(0)



Median
Observation:42 mo

Schmitz N et al. Blood 2021

Autologous Stem-Cell Transplantation As First-Line Therapy in Peripheral T-Cell Lymphomas: Results of a Prospective Multicenter Study

Peter Reimer, Thomas Rüdiger, Eva Geissinger, Florian Weissinger, Christoph Nerl, Norbert Schmitz, Andreas Engert, Hermann Einsele, Hans Konrad Müller-Hermelink, and Martin Wilhelm

ics of Patients at Diagno	osis
No. of Patients $(N = 83)$	%
32	39
27	33
13	16
5	6
4	5
2	2
46 30-	
51	61
32	39
5	6
16	19
25	30
37	45
	No. of Patients (N = 83) 32 27 13 5 4 2 46 30- 51 32 5 16 25

VOLUME 27 · NUMBER 1 · JANUARY 1 2009

JOURNAL OF CLINICAL ONCOLOGY

- 6XCHOP→CR or PR→ASCT
- CR:32(39%)
- PR:33(40%)
- 55(66%) underwent ASCT
- Reasons for not receiving ASCT:
- -Progressive dis (24 pts)
- -Patient request (2 pts)
- -TRM (1 pt)
- Other (1 pt)

Autologous Stem-Cell Transplantation As First-Line Therapy in Peripheral T-Cell Lymphomas: Results of a Prospective Multicenter Study

Peter Reimer, Thomas Rüdiger, Eva Geissinger, Florian Weissinger, Christoph Nerl, Norbert Schmitz, Andreas Engert, Hermann Einsele, Hans Konrad Müller-Hermelink, and Martin Wilhelm

Median follow-up time:33 months TRM:%3,6

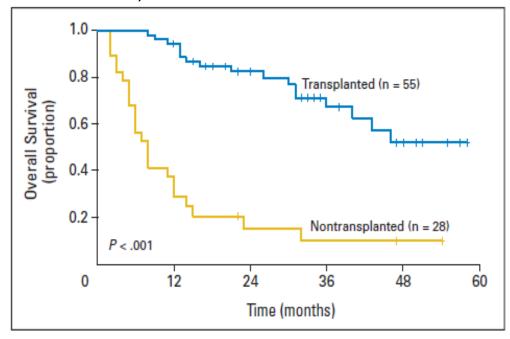
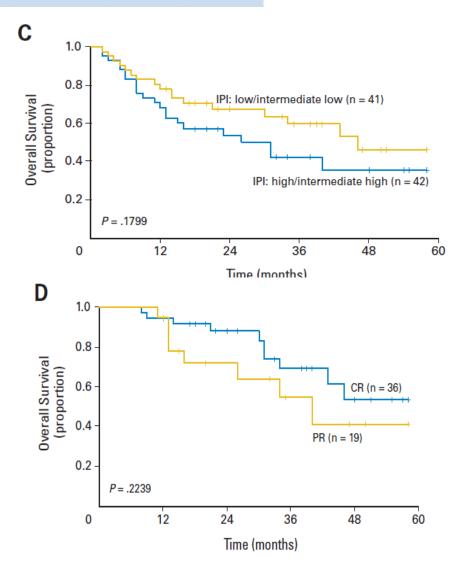



Fig 2. Overall survival in patients who did and did not receive transplantation.

- ☐ <u>3-year OS:</u>71% ASCT vs 11% no ASCT
- ☐ 22/55(40%) patients experienced relapse after autoSCT
- ☐ Median time to relapse:11.5 months

VOLUME 27 · NUMBER 1 · JANUARY 1 2009

JOURNAL OF CLINICAL ONCOLOGY

The Role of Autologous Stem Cell Transplantation in Patients
With Nodal Peripheral T-Cell Lymphomas in First Complete
Remission: Report From COMPLETE, a Prospective, Multicenter
Cohort Study

Cancer 2019;125:1507-1517

- ✓ 499 pts
- ✓ 213 pts in CR
- √ 119 pts with nodal PTCL
- ✓ -ALK- PTCL
- ✓ -AITCL
- ✓ -PTCL-NOS
- √ 36 pts ASCT
- √ 83 pts non-ASCT
- ✓ Reasons for non-ASCT:
- √ -physician decision 55%
- ✓ -PTCL subtype 21%
- ✓ -Pateint age/comorbidities (14%)
- ✓ -Others

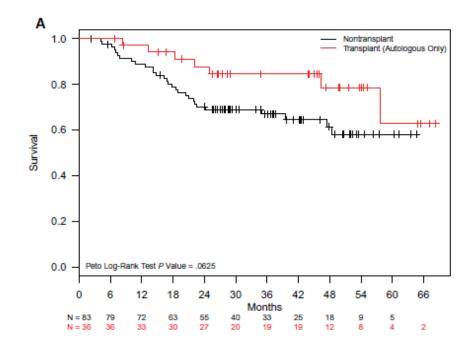
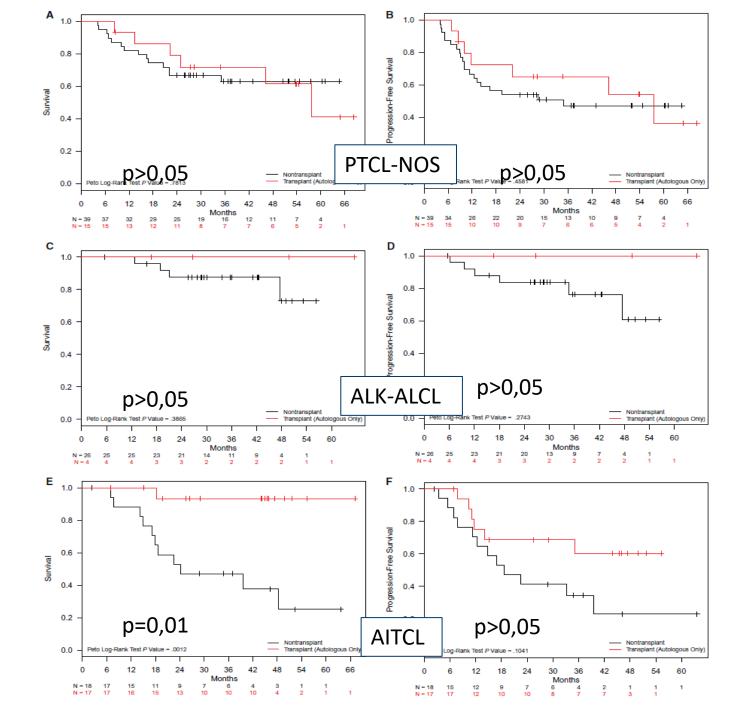
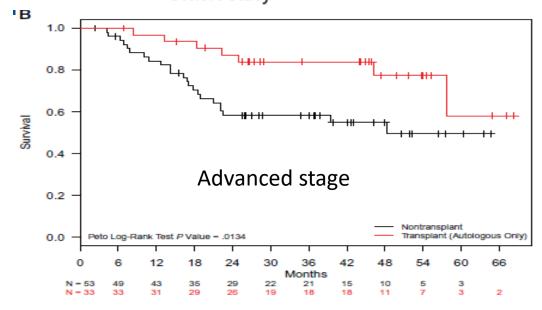


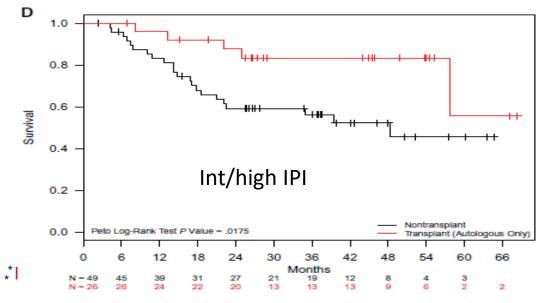
TABLE 1. Characteristics of Patients With PTCL in First Complete Remission

Characteristic	Non-ASCT (n = 83)	ASCT (n = 36)	P
Age			
<65 y, No. (%)	39 (47)	23 (64)	.00
≥65 y, No. (%)	44 (53)	13 (36)	
Mean ± SD, y	64.5 ± 13.9	57.5 ± 12.6	
Range, y	24-89	23-75	
Sex, No. (%)			
Female	28 (34)	8 (22)	.21
Male	55 (66)	28 (78)	
Race, No. (%)		. ,	
White	65 (78)	30 (83)	.32
Black	11 (13)	4 (11)	
Asian	3 (4)	0	
Other/unavailable	4 (5)	2 (6)	
ECOG performance status, No. (%)			
0-1	79 (95)	35 (97)	.61
2	4 (5)	1 (3)	
3	Ò ,	ò	
Histologic subtype, No. (%)			
AITL	18 (22)	17 (47)	.01
ALK-negative ALCL	26 (31)	4 (11)	.02
PTCL NOS	39 (47)	15 (42)	.59
Ann Arbor stage, No. (%)			
1/11	30 (36)	3 (8)	.01
III/IV	53 (64)	33 (92)	
Bone marrow involvement, n/N (%)	11/40 (28)	8/13 (62)	.03
1Pf score, No. (%) 0-2	59 (71)	23 (64)	.44
3-4	24 (29)	13 (36)	
PIT score, No. (%)	24 (29)	13 (30)	
1	18 (22)	9 (25)	.23
2	38 (46)	15 (42)	.20
3	22 (27)	6 (17)	
4	5 (6)	6 (17)	
First-line chemotherapy	3 (0)	0(11)	
Anthracycline-containing, No. (%)	54 (71)	25 (71)	.97
			.7:
No. of cycles, mean ± SD	4.8 ± 2.3	4.9 ± 1.9	


The Role of Autologous Stem Cell Transplantation in Patients
With Nodal Peripheral T-Cell Lymphomas in First Complete
Remission: Report From COMPLETE, a Prospective, Multicenter
Cohort Study

Cancer 2019;125:1507-1517.




Median FU: 2.8 years 2-year OS:

- ✓ 87.8% for the ASCT group
- √ 70.2% for the non-ASCT group.

The Role of Autologous Stem Cell Transplantation in Patients
With Nodal Peripheral T-Cell Lymphomas in First Complete
Remission: Report From COMPLETE, a Prospective, Multicenter
Cohort Study

Patients with

- -AITL
- -Advanced-stage disease
- -Intermediate-to-high IPI might benefit from consolidative ASCT in CR1

Table 2. Selected large studies evaluating consolidative autologous stem cell transplant in nodal peripheral T-cell lymphomas.

First author Study type ^a	Benefit of auto-SCT	Response prior to auto-SCT	auto-SC	of intent to T (vs. no -SCT)		ter auto-SCT auto-SCT)	Comment auto-SCT
Ctuay type		CR/PR, %	PFS, %	OS, %	PFS, %	OS, %	
Reimer ¹⁰⁸ / Wilhelm ¹⁰⁹ Phase II	Maybe	62/20 ^e	3-yr, 36° 5-yr, 39	3-yr, 48 5-yr, 44	NR	3-yr, 71 (<i>vs</i> . 11)* 5-yr, 57 (<i>vs</i> . 23)*	5-yr analysis: 28 additional patients analyzed (on protocol)
D'Amore ³⁸ Phase II NLG-01	Maybe	53/31	5-yr, 44	5-yr, 51	NR	5-yr, 61 (<i>vs</i> . 28)*	No auto-SCT group includes those with no response/PD
Abramson ^{41,b} USA multicenter	Yes (UVA)f No (CR)	61/12	NR	NR	3-yr, 58 (vs. 30)*	3-yr, 74 (<i>vs</i> . 53)	No PFS/OS benefit of auto-SCT in MVA All CR: no PFS/OS benefit of auto-SCT
Ellin ^{8,c} Swedish Registry	Yes	NR	Auto-SCT MVA*	Auto-SCT MVA*	NR	NR	PFS*/OS* benefit in 'intent to auto-SCT' group <70 yr (not ad justed for response)
Cederleuf ⁴² Swedish/Danish	No	CR (All by design)	NR	NR	2-yr, 66 (<i>vs.</i> 67)	2-yr, 76 (<i>vs.</i> 80)	MVA: no OS benefit
Fossard ⁴⁰ LYSA	No	CR/PR 57	5-yr, 46 (<i>vs.</i> 40.5)	59 (<i>vs.</i> 60)	NR	NR	No PFS/OS benefit using propensity score matching MVA: no PFS/OS benefit
Park ¹¹⁰ COMPLETE	No	CR (All by design)	NR	NR	<i>P</i> =0.23	2-yr, 88 (<i>vs</i> . 70)	Improved OS with auto-SC1 in IPI score 2-4
Janikova ¹¹¹ CLSG	No	NR	5-yr, 46 (<i>vs</i> . 41)	5-yr, 59.5 (<i>vs</i> . 49)	NR	NR	Adjusted by IPI score: no PFS/OS benefit with auto-SCT
Garcia- Sancho ^{112,d} GELTAMO/FIL	Yes	CR (All by design)	NR	NR	5-yr, 63 (<i>vs.</i> 49)*	5-yr, 74 (<i>vs</i> . 62)	All CR: PFS*/OS* benefit in MVA
Brink ⁹ Netherlands Registry	Yes	NR	NR	NR	NR	Landmark 5-yr, 78 (vs. 45)* CR: 5-yr, 82 (vs. 47)*	MVA: improved OS*

Role of stem cell transplant in CD30⁺ PTCL following frontline brentuximab vedotin plus CHP or CHOP in ECHELON-2

Supplemental Table 3. by Consolidative SCT

Patients Achieving CR on the A+CHP Arm: Summary of PFS

	ALK– sALCL N=76		Non-sALCL N=38		Combined N=114		
	SCT (n=27)	No SCT (n=49)	SCT (n=11)	No SCT (n=27)	SCT (n=38) ^a	No SCT (n=76)	
Estimated PFS at 3 years, % (95% CI)	85.0 (64.9-94.1)	62.4 (46.4-74.8)	70.1 (32.3-89.5)	41.7 (22.4 - 59.9)	80.4 (62.9 - 90.2)	54.9 (42.4-65.8)	
Estimated PFS at 5 years, % (95% CI)	75.6 (46.6- 90.2)	51.5 (31.6- 68.3)	56.1 (19.5-81.5)	35.7 (17.0-55.0)	65.3 (38.7-82.6)	46.4 (32.3 - 59.3)	
Univariate, HR (95% CI)	0.35 (0.13-0.9	98)	0.46 (0.15-1.4	41)	0.36 (0.17-0.	77)	

Role of stem cell transplant in CD30⁺ PTCL following frontline brentuximab vedotin plus CHP or CHOP in ECHELON-2

Supplemental Table 6. Patients Achieving CR on the CHOP Arm: Summary of PFS by Consolidative SCT

	ALK– sALCL N=53		Non-sALCL N=44		Combined N=97		
	SCT (n=13)	No SCT (n=40)	SCT (n=16)	No SCT (n=28)	SCT (n=29)	No SCT (n=68)	
Estimated PFS at 3 years, % (95% CI)	58.6 (26.7-80.6)	62.7 (45.2 - 76.0)	73.7 (44.1 - 89.2)	42.9 (24.6 - 60.0)	67.2 (46.3-81.5)	54.1 (41.2-65.3)	
Estimated PFS at 5 years, % (95% CI)	58.6 (26.7-80.6)	55.7 (35.2-72.1)	43.0 (8.8-74.6)	42.9 (24.6 - 60.0)	48.9 (21.6-71.6)	50.9 (37.4-62.9)	
Univariate, HR (95% CI)	0.67 (0.24-1.8	39)	0.57 (0.22-1.4	47)	0.63 (0.32-1.2	24)	

R/R PTCL-NOS TREATMENT

R/R PTCL-NOS TREATMENT

- Despite advances in the front-line setting a large proportion of PTCL patients have lymphoma relapse or have primary refractory disease.
- The only established curative treatment is SCT.
- Studies of PTCL-NOS have elucidated the GATA3 and TBX21 molecular subtypes, BUT how this informs treatment decisions remains unknown

The outcome of peripheral T-cell lymphoma patients failing first-line therapy: a report from the prospective, International T-Cell Project

Monica Bellei,¹ Francine M. Foss,² Andrei R. Shustov,³ Steven M. Horwitz,⁴ Luigi Marcheselli,¹ Won Seog Kim,⁵ Maria E. Cabrera,⁶ Ivan Dlouhy,⁷ Arnon Nagler,⁸ Ranjana H. Advani,⁹ Emanuela A. Pesce,¹ Young-Hyeh Ko,¹⁰ Virginia Martinez,⁶ Silvia Montoto,¹¹ Carlos Chiattone,¹² Alison Moskowitz,⁴ Michele Spina,¹³ Irene Biasoli,¹⁴ Martina Manni¹ and Massimo Federico;¹ on behalf of the International T-cell Project Network

Haematologica 2018 Volume 103(7):1191-1197

- ✓ The International T-cell Project is an international prospective cohort study
- ✓ Out of 937 patients who received first-line treatment:
- ☐ 436 (47%) were identified as refractory
- ☐ 197 (21%) as relapsed
- □ 304 (32%) patients remained in complete remission
- ✓ Median time from the end of treatment to relapse was 8 months (range 2-73)

Median FU:38 mo

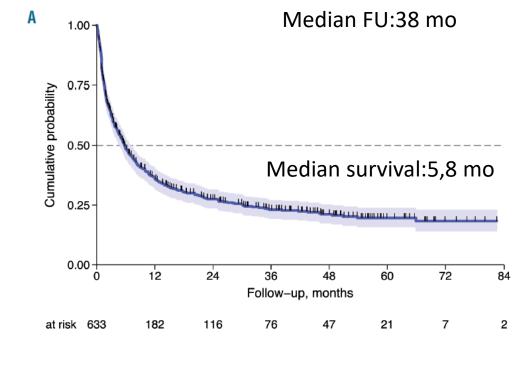
Table 1. Main characteristics at diagnosis of 436 refractory and 197 relapsed patients, and of all 937 patients analyzed.

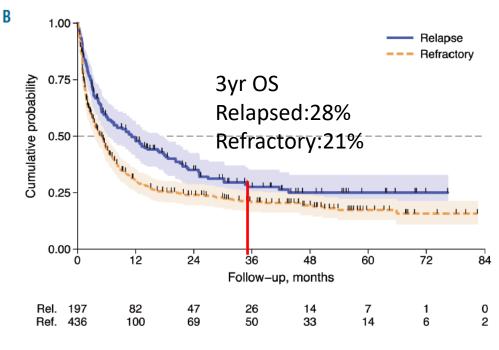
Parameter		actory 436)	Relap (n=1	97)	A (n=9	
	N	%	N	%	N	%
Median age (range), years	59 (18-89)	58 (21-88)	56 (18-89)			
Age, >60 years, N, %	203	47	90	46	401	43
Sex, male, N, %	273	63	136	69	579	62
ECOG-PS, >1, N, %	143	33	31	16	214	23
Serum LDH, > ULN, N, % [578]	234	54	82	42	404	43
Ann Arbor staging, III-IV, N, % [591]	325	75	128	65	605	65
ENS, >1, N, % [568]	148	34	43	22	250	27
Serum albumin, <3.5 g/dL, N, % [562]	204	47	70	36	359	38
NLR, >6.5, N, % [598]	125	29	48	24	231	25
PIT, high-risk (2-4), N, % [503]	172	39	52	26	283	30
IPI, high-risk (3-5), N, % [551]	184	42	53	27	294	31
Histology subtype PTCL, NOS AITL ALCL, ALK - ALCL, ALK + NKTCL Other	185 70 60 21 35 65	42 16 14 5 8 15	83 42 22 14 21 15	42 21 11 7 11 8	346 154 140 77 109 80	37 16 15 8 12 9
st line therapy CHT +/- RT RT alone CHT/consolidation HCT	422 2 12	97 <1 3	174 1 22	88 <1 11	844 18 75	90 2 8
Response to 1st line therapy	14	U		11	10	0
CR	-	-	170	86	474	51
PR <pr< td=""><td>137 299</td><td>31 69</td><td>27 -</td><td>14 -</td><td>164 299</td><td>18 32</td></pr<>	137 299	31 69	27 -	14 -	164 299	18 32

The outcome of peripheral T-cell lymphoma patients failing first-line therapy: a report from the prospective, International T-Cell Project

Haematologica 2018 Volume 103(7):1191-1197

Table 2. Details of treatment and events for the refractory/relapsed patients (n=633).


Parameter	Refractory (n=436)			apsed :197)		All (n=633)		
	N	%	N .	%	N .	%		
Type of event Relapse after CR Relapse after PR Unsatisfactory PR Refractory (<pr)< td=""><td>- 137 299</td><td>- 31 69</td><td>170 27 -</td><td>86 14 -</td><td>170 27 137 299</td><td>27 4 22 47</td></pr)<>	- 137 299	- 31 69	170 27 -	86 14 -	170 27 137 299	27 4 22 47		
Timing of events Refractory Early relapse (≤ 12 months) Late relapse (>12 months)	436 - -	69 - -	- 125 72	- 20 11	436 125 72	69 20 11		
HCT as Salvage HCT, yes No HCT (eligible for HCT) No HCT (CR/PR not eligible for HCT) No HCT (<pr eligible="" for="" hct)<="" not="" td=""><td>42 - 125 269</td><td>9 - 29 62</td><td>57 124 16</td><td>29 63 8</td><td>99</td><td>16</td></pr>	42 - 125 269	9 - 29 62	57 124 16	29 63 8	99	16		
No HCT (<i>whichever the reason</i>)	394	91	140	71	534	84		


CR: complete remission; PR: partial remission; Unsatisfactory PR: PR requiring immediate treatment after initial therapy; HCT: hematopoietic cell transplantation.

Relapsed pts:

- ✓ 92% eligible for HCT
- * * * * *

 * EHA EUROP HEMAT
- 29% received HCT
- 63% was eligible for HCT but not received HCT

Haematologica 2018 Volume 103(7):1191-1197

Table 3. Univariate Cox regression analysis for SAR.

Status	3-year SAR%(95%CI)	HR (95%CI)
Relapse	28 (21-35)	1.00
Refractory	21 (17-25)	1.43 (1.16-1.76)
Early relapse (≤ 12 months)	23 (16-32)	1.00
Late relapse (> 12 months)	34 (21-48)	0.57 (0.41-0.79)
Not eligible to HCT < PR	7 (3-11)	1.00
Not eligible to HCT (CR/PR)	30 (21-38)	0.43 (0.34-0.55)
Eligible HCT (CR/PR)	27 (19-36)	0.45 (0.35-0.58)
HCT	48 (37-58)	0.22 (0.16-0.30)
No HCT at salvage	18 (14-22)	1.00
HCT at salvage	48 (37-58)	0.36 (0.26-0.48)

CR: complete remission; PR: partial remission; SAR: survival after relapse; HCT: hematopoietic cell transplantation; HR: Hazard Ratio; CI: Confidence Interval

Hematopoietic Cell Transplantation for Systemic Mature T-Cell Non-Hodgkin Lymphoma

Table 1. Pa	tient Cha	ıracteris	tics		
	Autolo HC	_	Alloge HC		
Characteristic	No.	%	No.	%	Р
Histology†					.04
Anaplastic large-cell lymphoma‡	61	53	51	40	_
Peripheral T-cell lymphoma, unspecified	39	34	63	50]
Angioimmunoblastic T-cell lymphoma	15	13	12	10	
No. of lines of therapy prior to transplantation					
Median	2		3	}	.002
1	19	17	18	14	< .001
2	55	48	38	30	
≥ 3	39	34	55	43	
Unknown	2	2	7	6	

	Autolo	_	Allogeneic HCT		
Characteristic	No.	%	No.	%	P
Chemotherapy sensitivity					< .001
Sensitive	99	86	75	60	
Resistant	9	8	37	29	
Untreated	0		2	2	_
Unknown	7	6	12	10	
Disease status at transplantation					.001
CR1	40	35	18	14	
CR2+	24	21	20	16	
PIF, sensitive	16	14	23	18	_
PIF, other	6	5	23	18	
Relapse, sensitive	17	15	21	17	
Relapse, other	10	9	18	14	
Missing	2	2	3	3	
Conditioning regimen (allogeneic)	N/A				
Myeloablative			74	59	
NST/RIC			45	36	
Unknown			7	5	

Hematopoietic Cell Transplantation for Systemic Mature T-Cell Non-Hodgkin Lymphoma

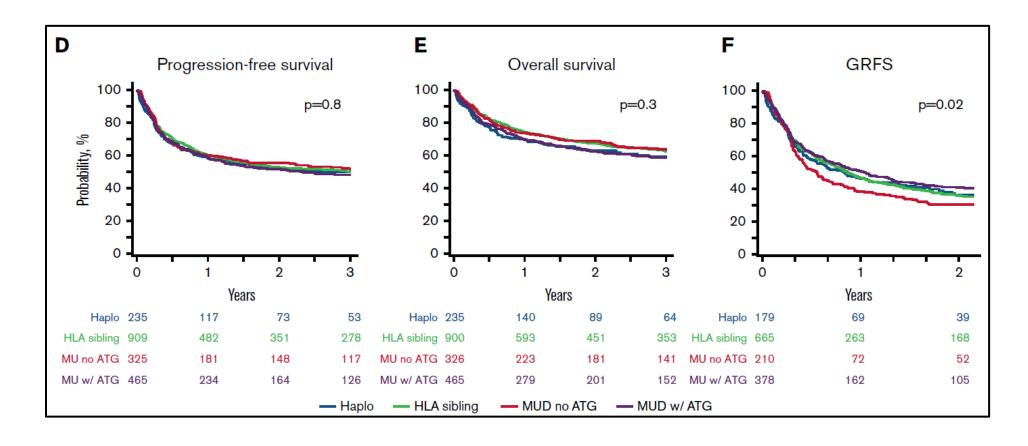
	All Patients							F	Patients Beyon	d CF	₹1			
		AutoHCT	М	yeloablative		NST/RIC			AutoHCT	М	yeloablative		NST/RIC	
Variable	%	95% CI (%)	%	95% CI (%)	%	95% CI (%)	P	%	95% CI (%)	%	95% CI (%)	%	95% CI (%)	P
Nonrelapse mortality														
At 100 days	2	0 to 6	19	11 to 29	18	8 to 30	< .001	3	1 to 8	21	12 to 32	20	9 to 33	< .001
At 1 year	7	3 to 13	29	19 to 40	27	15 to 40	< .001	4	1 to 10	30	19 to 42	27	14 to 41	< .001
At 3 years	11	6 to 17	32	22 to 43	27	15 to 40	< .001	6	2 to 13	34	22 to 46	27	14 to 41	< .001
Relapse/progression														
At 1 year	34	26 to 43	29	19 to 40	38	24 to 52	.5694	46	35 to 57	33	22 to 45	39	24 to 53	.2978
At 3 years	43	33 to 52	32	21 to 43	40	26 to 54	.3282	53	41 to 64	37	25 to 49	42	27 to 56	.1627
Progression-free survival														
At 1 year	58	49 to 67	42	31 to 53	36	22 to 49	.0113	50	38 to 60	37	25 to 49	34	20 to 49	.1813
At 3 years	47	37 to 56	36	25 to 47	33	20 to 47	.1834	41	29 to 52	29	18 to 41	32	18 to 46	.3449
Overall survival														
At 1 year	68	59 to 76	49	37 to 60	59	44 to 72	.0266	62	50 to 72	43	30 to 55	58	41 to 71	.0701
At 3 years	59	49 to 68	39	28 to 51	52	36 to 66	.0356	53	40 to 64	31	20 to 44	50	33 to 64	.0349

Abbreviations: autoHCT, autologous hematopoietic cell transplantation; CR1, first complete remission; NST, nonmyeloablative stem-cell transplantation; RIC, reduced-intensity conditioning.

Outcome of allogeneic transplantation for mature T-cell lymphomas: impact of donor source and disease characteristics

❖ Combined retrospective registry study from EBMT and CIBMTR: 1,942 PTCL undergoing allo-SCT between 2008 and 2018 primarily with R/R disease

Table 1. Patient characteristics


	Haplo-HCT	MSD HCT	MUD TCD+	MUD TCD-	P
Disease status					.84
CR	120 (51)	451 (51)	238 (52)	161 (51)	
PR	74 (32)	252 (29)	124 (27)	96 (30)	
Resistant/Untreated	39 (17)	177 (20)	93 (20)	60 (19)	
Missing data	4	31	13	9	
нст-сі					
≥3	52 (28)	191 (30)	105 (35)	95 (37)	.08
Missing data*	52	280	164	72	
Chemotherapy lines					
Median (IQR), n	2 (1.8-3)	2 (1-3)	2 (1-3)	2 (2-3)	.34
1 linet	31 (23)	89 (26)	57 (29)	19 (21)	
2 lines†	47 (34)	109 (32)	62 (32)	32 (34)	
≥3 lines†	58 (43)	143 (42)	76 (39)	42 (45)	
Missing data‡	101	570	273	233	
Female donor/male recipient	61 (26)	254 (28)	52 (11)	45 (14)	<.001
Histology					.14
AITL	68 (29)	270 (30)	155 (33)	101 (31)	
ALCL§	58 (24)	170 (19)	82 (18)	75 (23)	
PTCL	111 (47)	471 (51)	231 (49)	150 (46)	
Prior autologous HCT	78 (33)	336 (37)	195 (42)	132 (41)	.09
Follow-up, median (range) [IQR], months	24 (1-113) [13-48]	43 (1-128) [17-72]	35 (1-132) [13-63]	49 (1-134) [24-72]	

Hamadani M et al. Blood Advances 2022

Outcome of allogeneic transplantation for mature T-cell lymphomas: impact of donor source and disease characteristics

- ❖ 3-yr PFS:48-52%; 3-yr OS:59-64%
- Significant predictors of inferior OS and PFS were active disease status at HCT and decreased PS.
- ❖ AITL was associated with significantly reduced relapse risk and better PFS compared with PTCL-NOS.

SALVAGE CHEMOTHERAPY

СТ	ORR %	CR %	Median PFS (mo)
GDP	69	19	4 mo
Bendamustin	50	28	DoR 3.5 mo
ICE	70	35	6 mo
ESHAP	32	18	2.5 mo

Pralatrexate in Patients With Relapsed or Refractory Peripheral T-Cell Lymphoma: Results From the Pivotal

PROPEL Study

- **❖** n: 111 pts
- ❖ Median prior lines:3
- ❖ PTCL unspecified:53%
- The median DoR was 10.1 months
- The median PFS was 3.5 months
- The median OS was 14.5 months
- The most common AEs were mucositis, nausea, thrombocytopenia, and fatigue.

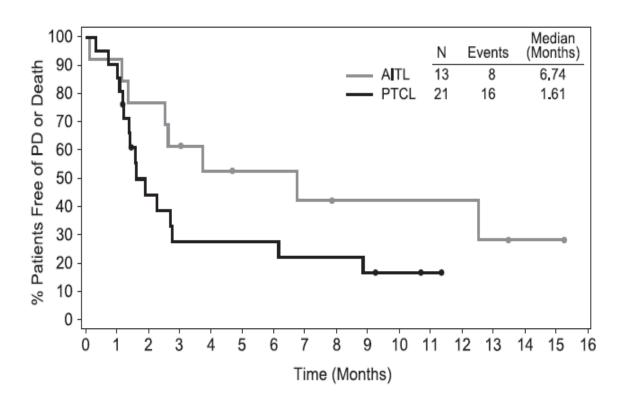
		IWC Response Rate			
Parameter	No.	%	No.	%	95% CI
Region					
North America	85	78	27	32	22 to 43
Europe	24	22	5	21	7 to 42
Age, years					
< 65	70	64	19	27	17 to 39
≥ 65	39	36	13	33	19 to 50
Prior systemic therapy					
1 regimen	23	21	8	35	16 to 57
2 regimens	29	27	7	24	10 to 44
> 2 regimens	57	52	17	30	18 to 43
Prior transplant					
Yes	18	17	6	33	13 to 59
No	91	83	26	29	20 to 39
Prior methotrexate					
Yes	21	19	5	24	8 to 47
No	88	81	27	31	21 to 41
Histoloav					
PTCL NOS	59	54	19	32	21 to 46
Angioimmunoblastic	13	12	1	8	0 to 36
Anaplastic LC	17	16	6	35	14 to 62
Transformed MF	12	11	3	25	5 to 57
Other	8	7	3	38	9 to 76

Abbreviations: IWC, International Workshop Criteria; PTCL, peripheral T-cell lymphoma; NOS, not otherwise specified; LC, large cell; MF, mycosis fungoides.

Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin

Table 1. Demographics and baseline disease characteristics by diagnosis

		1
AITL, n = 13	PTCL, n = 22	All treated patients N = 35
9 (69)	17 (77)	26 (74)
2 (15)	4 (18)	6 (17)
2 (15)	1 (5)	3 (9)
9 (69)	13 (59)	22 (63)
4 (31)	9 (41)	13 (37)
(%)		
9 (69)	17 (77)	26 (74)
4 (31)	5 (23)	9 (26)
3 (1, 4)	2 (1, 9)	2 (1, 9)
	9 (69) 2 (15) 2 (15) 9 (69) 4 (31) 9 (69) 4 (31)	9 (69) 17 (77) 2 (15) 4 (18) 2 (15) 1 (5) 9 (69) 13 (59) 4 (31) 9 (41) (%) 9 (69) 17 (77) 4 (31) 5 (23)


Table 2. Best clinical response

	AITL, n = 13	PTCL-NOS, n = 21	Total, N = 34
Best clinical response, n (%)*			
CR	5 (38)	3 (14)	8 (24)
PR	2 (15)	4 (19)	6 (18)
SD	3 (23)	3 (14)	6 (18)
PD	3 (23)	11 (52)	14 (41)
Objective response rate, n (%)	7 (54)	7 (33)	14 (41)
95% Cl for objective response rate†	25.1, 80.8	14.6, 57	24.6, 59.3
Disease control rate, n (%)‡	10 (77)	10 (48)	20 (59)

Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin

- ❖ Median DOR:
- ❖ All patients: 7.6 months
- ❖ AITL: 5.5 months
- ❖ PTCL-NOS:7.6 months
- No correlation between response and CD30 expression
- CRs or PRs in 9 of 14 patients with little to no detectable CD30 expression (≤15% CD30 expression) by central review.

Novel Agents

Table 3. Approved novel agents for the treatment of relapsed/refractory peripheral T-cell lymphomas: global perspective.

Agent	Type of agent	Study phase	Country approval	PTCL subtype(s)	ORR/CR %	Median DoR in months	Median PFS in months	Median OS in months
Pralatrexate ⁵¹	DHFR inhibitor	П	USA/Canada	PTCL/tMF	29/11	10.1	3.5	14.5
Brentuximab vedotin ⁶⁶	ADC CD30	II	Global	ALCL	86/57	12.6ª	13.3	Not reached*
Romidepsin ^{50,71, b*}	HDAC inhibitor	II	USA/Canada (de-listed)	PTCL AITL	25/15 27/19	17 ^b -	4 -	11.3 -
Belinostat ⁷²	HDAC inhibitor	П	USA	PTCL AITL	26/11 45.5	13.6 -	1.6 -	7.9 -
Chidamide ⁷³	HDAC inhibitor	II	China	PTCL AITL	28/14 50/40	9.9	2.1	21.4
Forodesine ¹¹³	PNP inhibitor	П	Japan	PTCL	25/10	10.4	1.9	15.6
Mogamulizumab ^{114,c}	CCR4 antibody	II	Japan	CCR4+ PTCL° (2014)	34/17	NR	2.0	14.2
Crizotinib ⁶⁷	ALK inhibitor	II	USA 1-21 yr	ALK+ ALCL	88/81	NR	NR	NR

T follicular helper phenotype predicts response to histone deacetylase inhibitors in relapsed/refractory peripheral T-cell lymphoma

Table 2. Response to romidepsin as single agent or combinations in TFH vs non-TFH phenotype relapsed/refractory PTCL

	TFH (r	n = 76)	Non-TFH		
Response	ORR, n/total (%)	CR, n/total (%)	ORR, n/total (%)	CR, n/total (%)	P *
Overall (n = 127)	43/76 (56.5)	22/76 (28.9)	15/51 (29.4)	10/51 (19.6)	.0035
Single agent (n = 97)	32/59 (54.2)	15/59 (25.4)	12/38 (31.5)	8/38 (21.0)	.0371
Combinations (n = 30)	11/18 (61.1)	7/18 (38.8)	3/12 (25.0)	2/12 (16.6)	.0717

SUMMARY

- Front-line treatment for PTCL is anthracycline-containing chemotherapy regimens (e.g., CHOP or CHOEP in younger patients) or BV-CHP in CD30-expressing subtypes based on ECHELON-2.
- High-dose chemotherapy and ASCT have been used as a consolidation strategy in eligible patients with chemosensitive disease and it leads to improvement in outcomes based on several studies.
- However, attainment of CR prior to transplant is prognostic for improved OS.
- There is no standard therapy for relapsed and refractory setting.
- Enrollment in a clinical trial when possible is recommended.
- Salvage therapy should be considered as palliative therapy or a bridge to transplant.
- Recent large series reported favorable outcomes in patients who underwent allogeneic transplant with the potential curative nature of allogeneic transplant.
- Pralatrexate, the ORR for PTCL-NOS was 32% and the median duration of response was 10.1 months.

THANK YOU...

