

EHA-TSH Hematology Tutorial

Clinical Case – Session 5: Treatment approaches in NK/T cell lymphoma nasal type

Speaker: Selin Küçükyurt

Ankara, Türkiye June 29-30, 2024

EHA | POWERED BY YOU!

ehaweb.org

Disclosure

• I have no actual or potential conflict of interest in relation to this program/presentation.

- A 51-year-old woman presented with persistent nasal obstruction, dysphagy and dysphonia (May 2020)
- Her previous medical history was irrelevant
- A mass was detected in the arytenoid cartilage and nasal cavity on clinical examination and imaging
- Also, careful clinical examination showed skin lesion on proximal 1/3 lateral region of the left arm (6.7x4.5 mm in size showed later in ultrasound)
- There was no palpable lympadenopathy

- PET/CT scanned nodular thickening in the **left arytenoid cartilage** characterized by intense FDG uptake with a transaxial wide diameter of approximately 1.5 cm (SUVmax = 12.3)
- A mass with soft tissue density was noted which filled most of the **right nasal cavity** and was characterized by intense FDG uptake, with an anteroposterior length reaching approximately 2.5 cm (SUVmax = 18.7)
- Two focal lesions with increased FDG uptake, restricted to the skin, were noted in the 1/3 proximal and lateral, 1/3 distal parts of the left arm
- There were no other sites of increased FDG activity

• The punch biopsies taken from the lesion adjacent to the right nasal cavity and the left arytenoid cartilage, and the excisional biopsy taken from the lesion in the fatty tissue in the proximal left humerus confirmed NK/T-cell lymphoma, positive for Epstein-Barr virus

• Stage IV according to Ann Arbor

<Stage I(E) disease (usually of the upper aerodigestive tract) plus isolated distant involvement>

- Stage IV according to the CA ENKTCL staging system
- IPI intermediate low-risk
- PINK intermediate risk
- NRI high risk

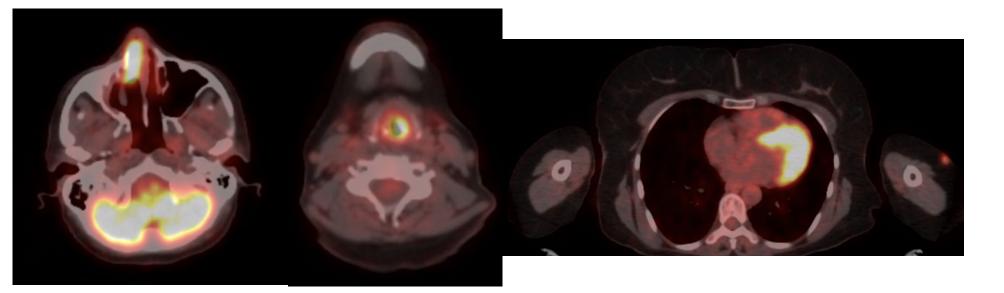
IPI: international prognostic index PINK: prognostic index natural killer cell lymphoma NRI: nomogram revised index the most widely used predictive models

The Chinese Southwest Oncology Group and Asia Lymphoma Study Group (CA) ENKTCL staging system

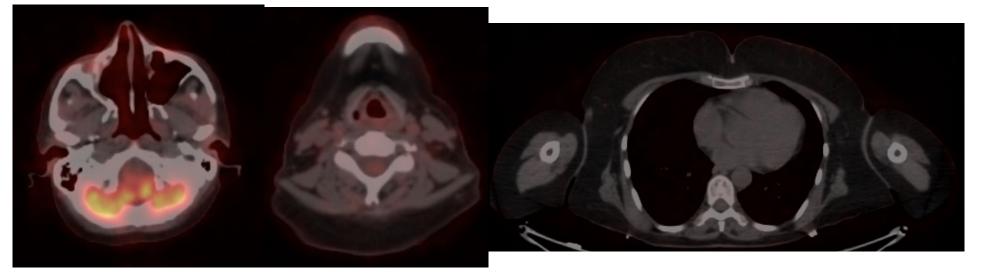
Description	
Lesions confined to the nasal cavity or nasopharynx No local invasion No lymph node involvement	
Lesions confined to the nasal cavity or nasopharynx Local invasion No lymph node involvement Non-nasal disease	
Lesions with regional lymph node involvement	
Non-regional lymph node involvement Lymph nodes above and below diaphragm Widespread disease	Fig. 18.4
	Lesions confined to the nasal cavity or nasopharynx No local invasion No lymph node involvement Lesions confined to the nasal cavity or nasopharynx Local invasion No lymph node involvement Non-nasal disease Lesions with regional lymph node involvement Non-regional lymph node involvement Lymph nodes above and below diaphragm

ENKTCL, extranodal natural killer/T-cell lymphoma

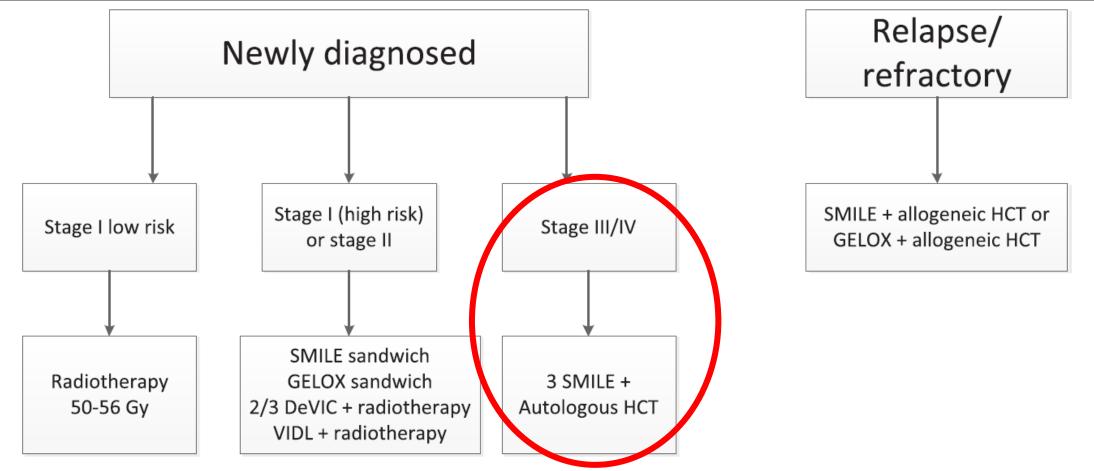
No bone marrow involvement


On TTE: left ventricular ejection fraction 60%

Plasma EBV-DNA negative



- Advanced stage nasal type extranodal NK T cell lymphoma (ENKTCL)
- Fit (ECOG 0)
- Disseminated disease
- We initiated SMILE protocol (dexamethasone, methotrexate, ifosfamide, L-asparaginase, etoposide)
- After second course therapy, complete response was achieved (September 2020)



Before treatment

After second course therapy

Figure 2. Proposed treatment algorithm. DeVIC = dexamethasone, etoposide, ifosfamide, and carboplatin; GELOX = gemcitabine, oxaliplatin, and L-asparaginase; HCT = hematopoietic cell transplantation; SMILE = dexamethasone, methotrexate, ifosfamide, L-asparaginase, and etoposide; VIDL = etoposide, ifosfamide, dexamethasone, and L-asparaginase.

van Doesum JA, Niezink AGH, Huls GA, Beijert M, Diepstra A, van Moorton T. Extranodal Natural Killer/T-cell Lymphoma, Nasal Type: Diagnosis and Treatment. Hemasphere. 2021;5(2):e523

- The patient underwent stem cell mobilization with G-CSF <7.73x10⁶/kg CD34(+) > (28.6cc DMS0)
- Then the 3rd course of SMILE started

She had no HLA-matched donor

ECOG 0 KARNOFSKY 100 EBMT 0 SORROR 0

- Autologous stem cell transplantation was performed on **November 3, 2020**
- Conditioning BEAM (carmustine, etoposide, cytarabine, melphalan)
- +9... neutrophil engraftment
- +10... platelet >20000 /mm3
- +13... platelet >50000 /mm3
- Complete remission was maintained in the posttransplant 3rd month
- Then, she was followed up in remission throughout 26 months

- There was a relapse in January 2023
- PET/CT showed involvement in bilateral nasal mucosa, bilateral tonsillar area, left vocal cords, bilateral cervical lymph nodes and spleen
- No bone marrow involvement
- Stage IIIE according to Ann Arbor

- After <u>two course DeVIC</u> (dexamethasone, etoposide, ifosfamide, carboplatin) protocol →
- On interim PET/CT, the involvement in bilateral nasal mucosa, bilateral tonsillar region, left vocal cords and spleen was completely regressed. The involvement in bilateral cervical lymph nodes had almost completely regressed
- Then, the patient was treated with <u>50 Gy radiotherapy</u>, followed by <u>2</u> more courses of DeVIC (sandwich approach)
- Complete response was achieved

- She was then allografted from her HLA-haploidentical son donor using myeloablative conditioning on January 17, 2024.
- Conditioning: Flu-Bu-TT (fludarabine-busulfan-thiotepa)
- GVHD prophylaxis
 - -rabbit ATG
 - -PTCy, Cyclosporine, MMF
- Defibrotide prophylaxis was added to the protocole for prevention of sinusoidal obstruction syndrome

- The last visit (June 15, 2024) (at day +150)
 - Haemoglobin concentration (Hb) 10.0 g/l
 - WBC 2.8 x 10⁹/l
 - Neutrophils 1.4 x 10⁹/l
 - Platelet count 80 x 10⁹/l

CMV-PCR negative Molecular chimerism %99, XY chimerism 100 No active GVHD Bone marrow aspiration biopsy cellularity 50%, megakaryocytes with normal morphology were seen, no dysplasia, no disease involvement

- NKTCL is a rare, EBV-related non Hodgkin lymphoma
- It develops from transformation of NK-cells or cytotoxic T-cells, rarely both
- It shows a geographical predilection for Asian and South American populations
- NKTCL can be nodal or extranodal

Montoto S, Dreyling M, Ballova V. ESMO Lymphomas: Essentials for Clinicians Third Edition, 2024

- More than two thirds of NKTCLs are localised at diagnosis and most frequently located in the nasal and upper airway region
- Nasal type is more prevalent in men in their 5th decade
- Disseminated disease occurs in 10%-20% of ENKTCLs, involving sites such as testis, <u>skin</u>, intestine, soft tissue and bone marrow (rarely) and may be complicated by HPS
- Despite the predominant nasal location, spread to the cerebrospinal fluid (CSF) is uncommon

Montoto S, Dreyling M, Ballova V. ESMO Lymphomas: Essentials for Clinicians Third Edition, 2024

- NKTCL shows an angiocentric and angiodestructive pattern
- EBV infection and subsequent genetic alterations in infected cells are central to ENKTCL development
- Positivity for EBV with in situ hybridisation is necessary for diagnosis

The circulating EBV in the peripheral blood can often be detected, providing another method of disease monitoring

Tse E, Zhao WL, Xiong J, Kwong YL. How we treat NK/T-cell lymphomas. J Hematol Oncol. 2022;15(1):74.

- Staging distinguishes between localized disease versus advanced disease
- Ann Arbor staging system → staging ENKTCL and is useful for planning RT
- Site, local invasion and lymph node involvement seems more accurate in estimating survival

Localized NKTL is curable but most persons with advanced disease have a poor prognosis
 Table 1. Detailed description of The Chinese Southwest Oncology

 Group and Asia Lymphoma Study Group (CA) ENKTL staging system.

Stage	Description
1	Lesions confined to the nasal cavity or nasopharynx
	No local invasion
	No lymph node involvement
I	Lesions confined to the nasal cavity or nasopharynx
	Local invasion
	No lymph node involvement
	Non-nasal disease
Ш	Lesions with regional lymph node involvement
IV	Non-regional lymph node involvement
	Lymph nodes above and below diaphragm
	Widespread disease

	Table 2.	companson or prognostic pied	cuve models.				
Model		Prognostic factors (points)	Definition (points)	Development/v	alidation era	Accuracy ^a	
				Anthracycline	No anthracycline	C-statistic	AUC for 5-year survival
International Prognostic Index	IPI	Age >60 years (1); Increased LDH (1); PS \ge 2 (1); Stage-III/IV (1); Extra-nodal disease \ge 2 (1)	Low-risk (0–1) Intermediate low- risk (2) Intermediate high- risk (3) High-risk (≥4)	Development	-	0.62	0.61
Korean Prognostic Index	КРІ	B-symptoms (1); Stage-III/IV (1); Increased LDH (1); Regional lymph node involvement (1)	Group 1 (0) Group 2 (1) Group 3 (2) Group 4 (≥3)	Development	Validation	0.64	0.68
Prognostic Index of Natural Killer Lymphoma	PINK	Age >60 years (1); Stage-III/IV (1); Distant lymph node involvement (1); Non-nasal disease (1)	Low-risk (0) Intermediate-risk (1) High-risk (≥2)	-	Development and validation	0.61 • E	0.63
Nomogram -revised Risk Index	NRI	Age >60 years (1); Stage-II (1); Stage-III/IV (2); PS \ge 2 (1); Increased LDH (1); With PTI (1)	Low-risk (0) Intermediate Iow- risk (1) Intermediate high- risk (2) High-risk (3) Very high-risk (≥4)	Development	Validation	0.70	0.72
	AUC area	under curve, LDH lactate dehydrog	genase, PS performance state	us, PTI primary tum	or invasion.	A	dopting a dyna

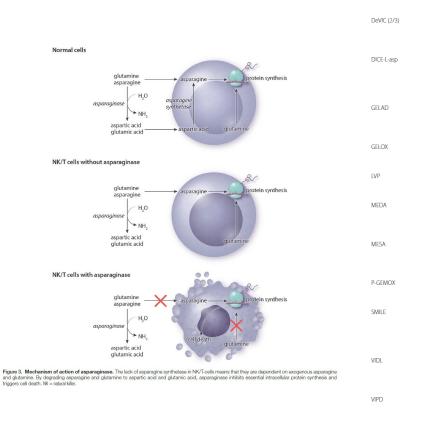
Table 2. Comparison of prognostic/predictive models.

Auctarea under curve, Lum ractate denydrogenase, PS performance status, PTI primary tumor invasion.

Wang H, Fu BB, Gale RP, Liang Y. NK-/T-cell lymphomas. Leukemia. 2021;35(9):2460-2468. Tse E, Zhao WL, Xiong J, Kwong YL. How we treat NK/T-cell lymphomas. J Hematol Oncol. 2022;15(1):74.

c approach that incorporates evolving parameters, such as plasma EBV **DNA and PET/CT imaging**

Table 2 Major regimens used in NK/T-cell lymphomas, listed in alphabetical order according to acronyms


Reaimens

AspaMetDex

DDGP

Principles of Treatment

- NK-cells express high levels of P-glycoprotein, leading to a multidrug resistance (MDR) phenotype
- Anthracycline-containing (CHOP or CHOP-like) regimens are MDR-dependent and ineffective
- So, anthracycline-containing regimens should be avoided in NKTCL
- non-MDR-dependent therapies should be the first choice of therapy, examples of which are asparaginase- or platinum-based therapies which induces apoptosis of NK-cells in vitro
- Also, NKTCLs are radiosensitive

Drugs and schedule E. coli L-asparaginase: 6000 U/m², IM, days 2, 4, 6, 8 Methotrexate: 3000 mg/m², IV, day 1 Dexamethasone: 40 mg, oral, days 1-4 Dexamethasone: 15 mg/m², IV, days 1-5 Cisplatin: 20 mg/m², IV, days 1–4 Gemcitabine: 800 mg/m², IV, days 1, 8 Pegaspargase: 2500 IU/m², IM, day 1 Dexamethasone: 40 mg, IV, days 1-3 Etoposide: 67 mg/m², IV, days 1-3 Ifosfamide: 1000 mg/m², IV, days 1-3 Carboplatin: 200 mg/m², IV, day 1 Dexamethasone: 20 mg/m² days 1-4 Ifosfamide: 1200 mg/m², IV, days 1-3 Cisplatin: 25 mg/m², IV, days 1-4 Etoposide: 60 mg/m², days 1–4 L-asparaginase: 6000 U/m², days 6–11 Gemcitabine: 1000 mg/m², IV, day 1 Etoposide: 60 mg/m², IV, days 1-3 Pegaspargase: 2000 U/m² day 5 Dexamethasone: 40 mg, days 1-4 Gemcitabine: 1000 mg/m², IV, days 1, 8 E. coli L-asparaginase; 6000 U/m², IM, days 1-7 Oxaliplatin: 130 mg/m², IV, day 1 L-asparaginase: 6000 IU/m², IV, days 1-5 Vincristine: 1.4 mg/m², IV, day 1 Prednisolone: 100 mg, oral, days 1-5 Methotrexate: 3000 mg/m², IV, day 1 Etoposide: 100 mg/m², IV, days 2-4 Dexamethasone: 40 mg, IV, days 2-4 Pegaspargase: 2500 U/m², day 4 Methotrexate: 1000 mg/m², IV, day Etoposide: 100 mg/m², days 2–4 Dexamethasone: 40 mg, IV, days 2-4 Pegaspargase: 2500 U/m², IM, day 4 Pegaspargase: 2500 IU/m², IM, day 1 Gemcitabine: 1000 mg/m², IV, days 1, 8 Oxaliplatin: 130 mg/m², IV, day 1 Dexamethasone: 40 mg. IV or oral, days 2-4 Methotrexate: 2000 mg/m², IV, day 1 Ifosfamide: 1500 mg/m², IV, days 2-4 E. coli L-asparaginase: 6000 U/m², IV, days 8, 10, 12, 14, 16, 18, 20 Etoposide: 100 mg/m², IV, days 2-4 Etoposide: 100 mg/m², IV, days 1-3 Ifosfamide: 1200 mg/m², IV, days 1-3 Dexamethasone: 40 mg, IV, days 1-3 L-asparaginase: 4000 IU/m², IM, days 8, 10, 12, 14, 16, 18, 20 Etoposide: 100 mg/m², IV, days 1-3 Ifosfamide: 1200 mg/m², IV, days 1-3 Cisplatin: 33 mg/m², IV, days 1–3 Dexamethasone: 40 mg, IV or oral, days 1-4

Tse E, Zhao WL, Xiong J, Kwong YL. How we treat NK/T-cell lymphomas. J Hematol Oncol. 2022;15(1):74. van Doesum JA, Niezink AGH, Huls GA, Beijert M, Diepstra A, van Meerten T. Extranodal Natural Killer/T-cell Lymphoma, Nasal Type: Diagnosis and Treatment. Hemasphere. 2021;5(2):e523

Stage I/II Nasal NKTCL

Assessment of medical fitness is important for treatment choice

- asparaginase-containing regimens combined with radiotherapy
- concurrent chemoradiotherapy vs sequential chemotherapy and radiotherapy
- radiotherapy doses below 50 Gy linked to higher locoregional relapse rates

Regimens	Status	Stage	ORR	CR (%)	PFS	OS	References
VIDL + RT	Newly diagnosed	/	90%	87	5 year: 60%	5 year: 73%	[61]
LVP + RT	Newly diagnosed	1/11	89%	81	5 year: 64%	5 year: 64%	[64]
GELOX + RT	Newly diagnosed	/	96%	74	5 year: 74%	5 year: 85%	[67]
P-GEMOX [+ RT for stage I/II]	Newly diagnosed	1/11	94%	80	2 year: 77%	2 year: 83%	[68]
	Newly diagnosed	1/11	94%	64	3 year: 66%	3 year: 81%	[69]
	Relapsed/refractory		81%	52	3 year: 24%	3 year: 58%	[76]
DICE-L-asp	Newly diagnosed	1/11	100%	91	5 year: 82%	5 year: 89%	[70]
MESA	New diagnosed	1/11	92%	89	2 year: 89%	2 year: 92%	[30]
SMILE [+ RT for stage I/II]	Newly diagnosed	/	90%	69	Not reported		[73]
		III/IV	Not reported	54	4 year: 60%	5 year: 47%	
	Relapsed/refractory		77%	66	4 year: 68%	5 year: 52%	
DDGP	Newly diagnosed	III/IV	95%	71	1 year: 86%	1 year: 90%	[77]
AspaMetDex	Relapsed/refractory		78%	61	2 year: 40%	2 year: 40%	[74]
MEDA	Relapsed/refractory		77%	61	1 year: 62%	1 year: 69%	[75]
GELAD	Newly diagnosed	1/11	94%	92	2 year: 90%	2 year: 94%	[71]

Table 3 Outcome of patients with NK/T-cell lymphomas treated with asparaginase-containing regimens

ORR: Overall response rate; CR: complete remission; PFS: progression-free survival; OS: overall survival; RT: radiotherapy; VIDL: etoposide, ifosfamide, dexamethasone, L-asparaginase; LVP: L-asparaginase, vincristine, prednisolone; GELOX: gemcitabine, L-asparaginase, oxaliplatin; P-GEMOX: pegaspargase, gemcitabine, oxaliplatin; DICE-L-asp: dexamethasone, ifosfamide, cisplatin, etoposide, L-asparaginase; MESA: methotrexate, etoposide, dexamethasone, pegaspargase; SMILE: dexamethasone, methotrexate, ifosfamide, L-asparaginase, etoposide; DDGP: dexamethasone, gemcitabine, cisplatin, pegaspargase; AspaMetDex: L-asparaginase, methotrexate, dexamethasone; MEDA: methotrexate, etoposide, dexamethasone and pegylated asparaginase; GELAD: gemcitabine, etoposide, pegasparaginase, dexamethasone

Tse E, Zhao WL, Xiong J, Kwong YL. How we treat NK/T-cell lymphomas. J Hematol Oncol. 2022;15(1):74.

Stage III/IV Nasal and Non-Nasal NKTCL

- The standard-of-care for advanced stage is asparaginase based combination chemotherapy
- Therapeutic goals include achieving undetectable plasma EBV DNA and a PET/CT Deauville score \leq 3 at both interim and endof-treatment
- CNS involvement can occur in stage III/IV
- Intermediate-dose methotrexate regimens (SMILE or SMILE-like) reduce the risk of CNS involvement

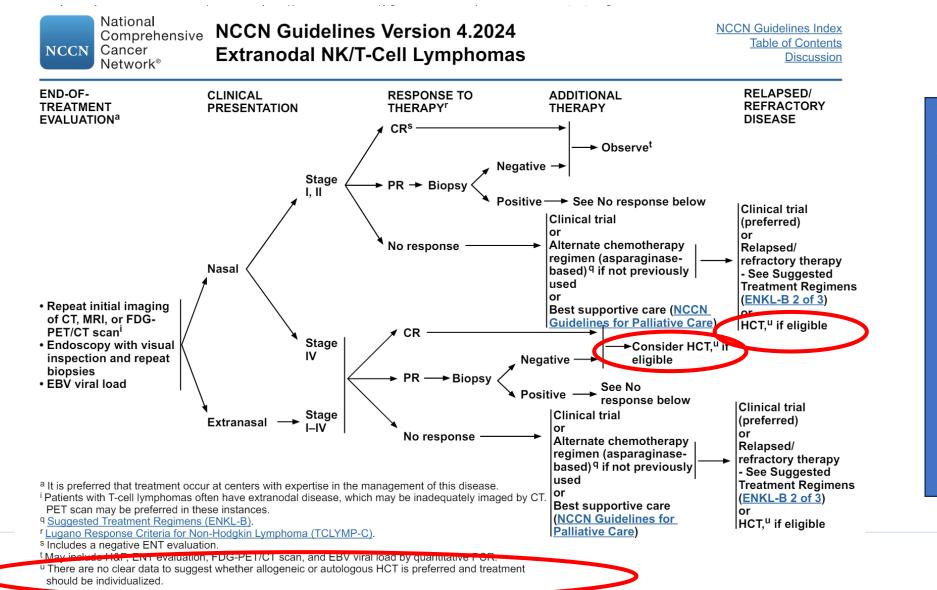

Wang H, Fu BB, Gale RP, Liang Y. NK-/T-cell lymphomas. Leukemia. 2021;35(9):2460-2468.

Table 3. Therapies for advan	nced NKTL.							
Regimen	N subjects	Response	Survival (95%CI)	Adverse	events (Gr	ades-3/-4)		Ref.
				↓ WBC	Anemia	↓ Platelets	Liver	
CCRT-DeVIC	27	20 CR 1 PR	2-year 78% (57, 89%) 5-year 70% (49, 84%)	No s	specifi	c intensi	ve asparagina	se-
CCRT-ESHAP	13	12 CR 1 PR	2-year 72% (35, 90%)	b	ased c	hemoth	erapy regimen	
CCRT-DEP ± DVIP	33	20 CR 6 PR	5-year 66% (50, 83%)	prov	vides c	learly su	iperior outcom	ies
CCRT-VIPD	30	24 CR 1 PR	3-year 86% (NA)	for	[.] advar	nced-sta	ge ENKL, and a	II
CCRT-VIDL	30	26 CR 1 PR	5-year 73% (NA)	ar	re asso	ciated w	/ith substantia	1
SCRT-DDGP	30	22 CR 3 PR	5-year 86% (NA)		ä	adverse	effects.	
SCRT/Sandwich-SMILE	17	14 CR	NA					
Sandwich-MESA	40	34 CR 1 PR	2-year 92% (NA)	53%	13%	0	NA	[76]
Sandwich-GELOX/PGEMOX	27	20 CR 6 PR	5-year 85% (NA)	33%	7%	30%	404 ↑ transaminases	[77, 78
SMILE	38	17 CR 13 PR	1-year 55% (38, 69%)	100%	Due	e to poor s	urvival rates,	[79]
PEMD	32	15 CR 9 PR	4-year 51% (32, 70%)	1			ment should be or stage III/IV	
AspaMetDex	19	11 CR 3 PR	NA ^a				age non-nasal	
PGEMOX ± RT/ Autotrasplant	35	18 CR 10 PR	3-year 65% (NA)	4	dise	ase, even achie	if remission is	
GDP	41	17 CR 17PR	2-year 55% (NA)	34%				[83]
DDGP	21	15 CR 5 PR	2-year 74% (NA)	62%	52%			[84]

CI 95% confidence interval, CCRT concurrent chemotherapy and radiation therapy, SCRT sequential chemotherapy and radiation therapy, CR complete remission, PR partial remission, Pe pegaspargase, NA not applicable, AST aspartate transaminase, ALT alanine transaminase. ^aMedian survival time of 12 months. 23 Neutropenia.

HEMATOPOIETIC CELL TRANSPLANTATION

There is no firm consensus regarding optimal postinduction management of ENKL and no well-controlled prospective studies or randomized trials to guide decisionmaking.

Autologous Transplantation

Table 4. Haematopoietic cell autotransplants in NKTL.

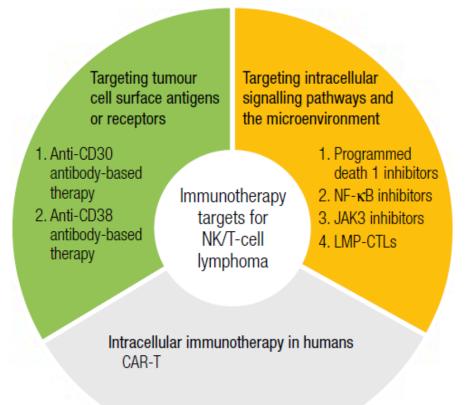
N subjects	Pre-transplant Response	Post-transplant Response	PFS (95% CI)	OS (95% CI)	Ref.
31	16 CR 15 PR	19 CR 4 PR 6 PD 2 NA	3-year 40% (22, 58%)	3-year 52% (34, 71%)	[87]
10	6 CR 2 PR 2 PD	NA	2-year 33% (13, 84%)	2-year 40% (19, 86%)	[15]
17	17 CR/PR	8 CR 9 PD	NA	NA	[88]

PFS progression-free survival, OS overall survival, CI confidence interval, CR complete remission, PR partial remission, PD progressive disease, NA not applicable.

Wang H, Fu BB, Gale RP, Liang Y. NK-/T-cell lymphomas. Leukemia. 2021;35(9):2460-2468.

Relapsed/Refractory Disease

- The outcome of R/R patients is dismal, with a reported median PFS of 4.1 months and OS of 6.4 months
- Chemotherapy-based treatment is mostly ineffective, so these patients should be considered candidates <u>for clinical trials with novel therapies</u>
- In the absence of a clinical trial, <u>pembrolizumab or nivolumab</u> are appropriate options.
- Patients previously treated with SMILE or refractory to SMILE can be treated with gemcitabine and platinum-based regimens
- Also, <u>PD-L1 antibody (avelumab), anti-CD30 and anti-CD38 antibodies</u> are increasingly used.
- Histon deacetylase (HDAC) inhibitors are other options
- Other drugs approved in T cell lymphomas, including **pralatrexate and romidepsin**


NCCN Guidelines Version 4.2024 Extranodal NK/T-Cell Lymphomas

SUGGESTED TREATMENT REGIMENS^{a,b}

	RELAPSED/REFRACTORY THERAPY
P	referred regimens ^{h,i}
•	Clinical trial
•	Pembrolizumab
•	Nivolumab
c	<u> Other recommended regimens</u> (alphabetical order)
	Single agents
	Brentuximab vedotin for CD30+ disease
	Pralatrexate
	Combination regimens (alphabetical order)
	 Asparaginase-based combination chemotherapy regimen (ENKL-B 1 of 3 not used in first-line therapy
	DHA (dexamethasone and cytarabine) + platinum (cisplatin or oxaliplatin)
	DHA (dexamethasone and cytarabine) + carboplatin (category 2B)
	 ESHA (etoposide, methylprednisolone, and cytarabine) + platinum (cisplatin or oxaliplatin)
	GDP (gemcitabine, dexamethasone, and cisplatin)
	 GemOx (gemcitabine and oxaliplatin)
	 ICE (ifosfamide, carboplatin, and etoposide)
_	
_	Iseful in certain circumstances
	RT ^g
	Belinostat ^j
٠	Romidepsin ^J

Immunotherapy targets for NK/T-cell lymphoma

Montoto S, Dreyling M, Ballova V. ESMO Lymphomas: Essentials for Clinicians Third Edition, 2024.

References

- van Doesum JA, Niezink AGH, Huls GA, Beijert M, Diepstra A, van Meerten T. Extranodal Natural Killer/T-cell Lymphoma, Nasal Type: Diagnosis and Treatment. Hemasphere. 2021;5(2):e523
- Wang H, Fu BB, Gale RP, Liang Y. NK-/T-cell lymphomas. Leukemia. 2021;35(9):2460-2468.
- Tse E, Zhao WL, Xiong J, Kwong YL. How we treat NK/T-cell lymphomas. J Hematol Oncol. 2022;15(1):74.
- Montoto S, Dreyling M, Ballova V. ESMO Lymphomas: Essentials for Clinicians Third Edition, 2024.
- NCCN guideline, 2024

